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THE PERFORMANCE OF PRECONDITIONED ITERATIVE METHOLS
IN COMPUTATIONAL ELECTROMAGNETICS

Charles Frederick Smith, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1987

\JThe numerical solution of electromagnetic scattering
problems involves the projection of an exact equation onto a
finite;dimensional space, and the solution of the resulting
matrix equation. By using iterative algorithms, the
analysis of scatterers that are an order of magnitude larger
electrically may be feasible.

Two approaches to achieving the solutions in less time
are examined and applied to several typical electromagnetic
scattering problems.

First, through extensions to the conjugate gradient and
biconjugate gradient algorithms, multiple excitations for
the same matrix can be simultaneously treated. Depenrding on
the type of problem, the number of excitations, and the
algorithm employed, substantial time savings may be
achieved.

Second, the performance of preconditioning combined with
the conjugate gradient, biconjugate gradient, and Chebyshev
algorithms 1is evaluated for typical electromagnetic
scattering problems. Preconditioners based on significant
structural features of the matrix are able to reduce the

overall execution time.
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THE PERFORMANCE OF PRECONDITIONED ITERATIVE METHODS
IN COMPUTATIONAL ELECTROMAGNETICS

Charles Frederick Smith, Ph.D.
Department of Electrical and Computer Engineering
University of Illinoils at Urbana-Champaign, 1387

The numerical solution of electromagnetic scatter.ng
problems involves the projection of an exact egua+*ion onto a
firite~dimensional space, and the solution of the resulting
matrix equation. By using iterative algorithms, the
analysis of scatterers that arve an order of magnitude larger
electrically may be feasible.

Two approaches to achieving the solutions in less time
are examined and applied to several typical electromagnetic
scattering problems.

First, through extensions to the conjugate gradient and
biconjugate gradient algorithms, multiple excitations for
the same matrix can be simultaneously treated. Depending on
the type of problem, the number of excitations, and the
algorithm employed, substantial time savings may be
achieved.

Second, the performance of preconditioning combined with
the conjugate gradient, biconjugate gradient, and Chebyshev
aigorithms is evaluated for typical electromagnetic
scattering problems. Preconditioners based on significant

structural features of the matrix are able to reduce the

overall execution time.
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1. INTRODUCTION

Since the advent of radar auring the second World War,
the characterization of the scattering of electromagnetic
waves by a variety of objects has been investigated ([1].
Solving the scattering problem for physical structures which
do noct conform to a constant metric surface in some
coordinate system has become feasible only since the
development of the digital computer and the method of
moments [2]. With this method, the continuous problem with
infinite degrees of freedom is converted to a manageable
size discrete problem. The size, in terms of wavelengths,
of objects capable of being treated by this method has been
continously enlarged by advances in computing machinery.
However, this advance has been somewhat thwarted by the use
of higher frequencies of the electromagnetic spectrum.
Large objects, such as aircraft, have effectively become
bigger in terms c¢f wavelengths. The use of advanced
techniques to reduce the radar cross-section of aircraft
relies on accurate solutions not possible with simplistic
modeling methods. More rigorous modeling requires that the
scatterer be treated in finer detail and also as a whole,
rather than the sum of many parts. This translates into a
need for methods that enable the designer or analyst to
treat problems with many more unknown variables.

The solution or scattering problems has historically

been accomplished by first formulating the problem as a
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Fredholm integral equation. The continuous prcblem 1is .
3 discretized via the method of moments, yielding a large -
[ -1
¥ matrix equation to be solved. It is also possible to ;
[} n 3
formulate the:e problems in terms of differential eguations,
" l\
) which are treated by finite element methods. Research into N
E
this approach shows much rromise [3], but large matrices may o
also result from this apprnach. "
The definition of a large matrix changes with each j
, ]
R 3
; announcement of more fast access memory on the latest ’
1 N
computer. If a square invertible matrix can fit in the >
? memory of the computer, Gaussian elimination [4] 1is )
\ generally recommended. For matrices which are sparse (i.e. ;
+ ld
) ’

a majority of the elements are zero), or have many redundant

elements in a certain structure, iterative methods may

yomow,y

extend the size of the matrix which may be treated.
Detailed guidance on when to use iterative methods for

electromagnetic problems has been established {[5]. Chapter

TP, Y%y

Two examines three of the many possible iterative methods

-
: and relates their performance to the eigenvalue spectrum of :
the iteration matrix. ;
ri Preconditioning has been used extensively for lowering E'
the condition number {4] of ill-conditioned matrices arising :{

; from finite~difference methods applied to wvarious

differential equations [6]. For ill-conditioned systems,

preconditioning is necessary to achieve ac~'rate results.

Preconditioning may also be used to modify the eigenvalue

"
n
M
F

spectra of the iteration matrices to achieve the desired

o
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solution 1in less time, offering an improvement in
computational efficiency. Preconditioning methods are
reviewed in Chapter Four and the results of their
application to matrices arising from electrcme:rnetic
scattering problems are presented in Chapter Five.

While the use of iterative methnds may enable one to
treat larger systems, this approach 1is not withou=: its
disadvantages. One of the most significant of these is the
apparent inability to efficiently treat multiple
excitations. Chapter Three details extensions to two of the
iterative methods. By using these new methods, significant
time savings result.

This work builds on the previous efforts of others,
especially A. F. Peterson and C. H. Chan. It, by itself,
represents a small step towards the integrated study of the
physical problem, the fcrmulation, and the method tc solve
the formulation. In recognition of this fact, sugcestions

for future study are included in Chapter Six.
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2. ITERATIVE METHODS

2.1. Introduction

The focus of this chapter is the theoretical properties
of three iterative methods. The three methods chosen have
some propertiss in common, but are significantly different
in many aspects and warrant further investigation when
applied to electromagnetic scattering problems. The methods
are the conjugate gradient method applied to the normal
equations (CGN), the complex biconjugate gradient method
(BCG), and the Chebyshev (CHEB) iterative algorithm.

The common goal of all three methods is the solution of

the matrix equation

Ax = Db (2-1)1

where x is the desired solution vector, b is the excitation
vector (also known as the "right hand side"), and A is an
invertable square matrix of order n. Often the formulation
of an electromagnetic scattering problem is such that the
elements of A are not explicitly formed. This does not
impose any loss of generality since all three methods do not
use any explicit elements of A, but merely require the
product of A and some vector be computakle. In all three

me-hods, let the error in the iterative solution at the nth
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iteration be

€n = X - Xp (2.2),
and the residual be defined as

rn = b - Axp = Aep (2.3).
If an initial guess for the solution, x4, is given, then

ro = b - AxXg = RAeg (2.4),
so that ro 1is the initial residual. Throughout this

chapter, the initial guess shall be assumed to be the zero
vector unless otherwise stated. The effect of a non-zero
initial guess on the convergence of the algorithms will be
addressed later in this chapter. The iterative process may

be stopped when the latest estimate for the solution

satisfies a criterion for ep , usually a metrix norm of the

form
lle 15 = < e, Ne, > (2.5),

where < x,y > = xH y, and N is a Hermitian positive definite
matrix. H denotes the complex conjugate transpose. Since x
is unknown, e cannot be formed. However, r can be formed
and the norm of rp can be related to the norm of ej. Since
the error and the residual at the nth iteration are relatec

by Equation (2.3), the norm c¢f the error is given by

llenll < 1IA™Y] jlrpll (2.6).
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Equation (2.3) can also be used to obtain ]
-
g
Plroll £ 1IALl lleoll (2.7, Y,
| . , )
} and then the desired result is La
P
llenl | HrnH X
—_— < A-l a S —— 2.8
Neoll = El It HIAL 1zo! | ( ), ]
>
e
.-'F-
where any consistent metrix and vector norm is usecd, The ®
o
quantity |1A~1|| |JA|| is known as the condition number of "
0
A, K(A), which under the 2-norm is the ratio of the largest - hﬁ
A,
to the smallest singular values of A [4]. In thece L
iterative methods, the solution is updated by -
[P
Xpn+l = Xn t an Pn (2.9, h:
]
T
and thus the residuals can be related by -
oY
In+l = Tn — &pn Apnp (2.10). ".:
L
This relationship is used to define a residual polynomial, "
O
Rp (A), Y
o
n *u
rn = Ra(A) ro = 3, ci Ab rg Co = 1 (z.11) . %
i=0 o
\I
o
In all iterative methods for which Equations (2.9, through :j
(2.11) hold, the convergence properties for a given initial gv
residual are well known. These properties are addrescsed in j
the rest of this chapter. In Chapter 4, the link betweern ﬁ
the spectrum of the physical problem modeled, and the L
mapping of it onto the spectrum of the iteratica matrix, N
-

®
T
I.\
1.\
A
J y . ) a W - e T e e Y e RS BV R N e S WG S )
,..‘ v -‘ WA A w. \\ . BTN Ot A O B O T T T T PRI J_\J_\-_\}..___}\{ » g AN AN
LI s ) i (Y 0) . S ) O - & B o) v Q . ”




will be shown. These two concepts determine the performance
of the iterative method when applied to electromagnetics

problems.

2.2 Conjugate Gradient Theory

The conjugate gradient method has been extensively
analyzed in the 1literature from various viewpoints.
Hestenes & Stiefel [7] introduced the method and showed two
of the properties of it, namely, the minimization of a
functional and the generation of an orthogonal sequence of
vectors. Stiefel [8] later showed the method was related to
the generation of an orthogonal sequence of polynomials.
The method can be viewed as the minimization of two
functionals [9] or a method based on orthogonal errors [10].
A large number of algorithms, including the original
conjugate gradient method and the conjugate gradient method
applied to the normal equations (CGN), can be obtained from
the general orthogonal error algorithm shown in Table 2.1.
The matrix B in that table 1is a Hermitian positive
definite, and the three sets of orthogonalities shown
result. This algorithm minimizes the error under the
B-norm, < Bep,epn > in each iteration. If the matrix A is
Hermitian positive definite, B may be chosen to be A,
resulting in the original conjugate gradient algorithm.
However, the matrix A arising from the formulaticn of

electromagnetic scattering problems cannot be guaranteed to

e
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TABLE 2.1

ORTHOGONAL ERROR ALGORITHM AND RESULTING ORTHOGONALITIES.

Po = Xo = b ~ Axe

For k = 0,1,2,3... until convergence do

X+l = Xk + Ok Pk

Tk+l ry = Ox APk
Px+1 = Tk+1 ~ Bk Pk
End do

where
ax = < Bex,rx > / < Bpk,Pk >
Bx = - < Bek+1,T¥k+1 > / < Beg,rx >

The resulting orthogonalities are:

< Bex,pi > =0 i<k
< Beg,ri > =0 i<k
< Bpk/pPi > =0 i<k
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be Hermitian positive definite. The matrices AHA and aaH

are always Hermitian, so if A is not Hermitian, B can be
chosen to be either AHA or A2H. The choice of aHa is

equivalent to the normal equations

AHpax = AHp (2.12),

which minimizes the 2-norm of the residual at each
iteration, and gives the CGNR algorithm of Table 2.2. The
other choice for B leads to a algorithm known as CGNE ([11],
which minimizes the norm of the error at each iteration.
This algorithm would take fewer iterations than CGNR to
reduce the norm of the error, e, to some predetermined
stopping c¢riterion, Likewise, CGNR would take fewer
iterations than CGNE to reduce the 2-norm of the residual
to a predetermined level. With the goal of an accurate
approximation to the solution x, CGNE appears to be the
algorithm of choice. But since thre 2-norm of the error is
not computable, the question of when to stop the algorithm
and accept the solution becomes important to avoid
unnecessary iterations. Equation (2.8) provides an upper
bound to use for stopping the algorithm and accepting the
solution. But this requires an estimate of the condition
number of the iteration matrix, and the additional work in
the algorithm to get the estimate.

The convergence properties of conjugate gradient based

algorithms are well known (7,12,13], and are easily showr. by
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TABLE 2.

2

CONJUGATE GRADIENT ALGORITHM FOR NOFMAL EQUATIONS ,CGUR)
AND RESULTING ORTHOGONALITIES

Po = ho = Afr, = AH(b - Ax,)

For k = 0,1,2,3... until convergence do

Xk+1 = Xx + Ok Pk
rk+l = Tk - Ok Apg
hx+1 = AHryyg

Px+1 = hk+1 - Px pPx

End do
where
ax = |lhgl 12 / |IApk] |2
B = lihks+1l 12 / | Ihgl}2
The resulting orthogonalities are:
< ryx,Ap; > =0 i<k
< hg,hsy > =0 i#k
< Apk,Ap; > = 0 i#k
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writing the residual polynomial for CGNR )
2,
rn = Rp(AAH) rg (2.13), <
’
and letting {vj} be the orthonormal eigenvectors of AaH
associated with the real, positive eigenvalues, li. Then :j
4
ro may be expanded as f,
Z
A
N )
To = Y Y5 Vs (2.14), e
=1 i
d
with hy
.
Yy = < ro,vy > (2.13), '::
l'.)
which gives *
<
N ~
~
Tn = 9 Y5 Rn(ARH) v; (2.16) . :
“~ BNt
j=1
L
The gquantity minimized by CGNR is N
H 2 N
< A'ne, e, > = |z, || N
N N hat
= Z 2 V5*%e Ra*(hg) Rah) < vy v > "
j=1 k=1 i
N o
= Z 17517 IR, (2.17), N
i=1 ;
~
3
-
where the residual polynomial is now written in the real o)
N
F_'
o
)
: h
)
b
.':
-
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variable A, with Rg(A) = 1 and Rn(0) = 1. Note that
N
lzol12 = 3, 17512 (2.18),
j=1

which is completely determined by the excitation and initial

guess, 1I one i1s used. The next iteration gives

N

Hzitl2 = X, 19512 (1 - do Ag)2 (2.19) .
3=1

This expression can be interpreted with the aid of Figure

2.1. CGNR choses 0o and hence the slope of Rj(A) so the
weighted sum of the vertical distances sgquared at each of
the eigenvalues is minimized. R4(l), a polynomial of degree
4, will have its roots at the eigenvalues a AAH, giving
rg=0. Thus a system with N non-repeated eigenvalues will be
solved exactly in N iterations. If the eigenvalues are
"clustered", the zero of the residual polynomial within the
cluster will greatly reduce the contribution, in subsequent
residuals, of the eigenvectors associated with the
eigenvalues in the <cluster. Aiso, if the eigenvector
decomposition of r in Equation (2.14) contains only n non-
vanishing Y4, the algorithm will converge in n iterations.
This result 1is true even though n may be significantly
smaller than the order of the system, N. Thus, to
accelerate the convergence rate of CGNR, the initial guess
must effectively eliminate the contribution of several

eigenvectors and not excite any more eigenvectors. The
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Figure 2.1 Residual polynomials of order zero, one, and
four, for an example system of order four.
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orthogonalities characteristic of algorithms based on the

orthogonal error procedure are true for infinite precision $
arithmetic, but not for finite precision arithmetic. The
major effect of the loss of orthogonality is the loss of the L
finite termination property, although accuracy of the ;
solution consistent with the number of digits of accuracy of ‘}

the computing machinery may still be obtained. With the £4

loss of orthogonality, CGNR becomes a true iterative J
I,
&lgorithm with slower convergence. One proposed method to ’f
4
maintain the orthogonality involves the storage of all ¥
)
previous vectors and reorthogonalization of selected vectors by
o
when the detected 1loss of orthogonality exceeds a i}
Ly
predetermined limit [14]). The storage of these vectors in A7
)
out-of-core memory and retrieval of the necessary ones is a -
=
significant disadvantage, especially for large problems. Rf
\
Q:
1
2.3 Biconjugate Gradient Thaory o
5
A
N
The biconjugate gradient algoritum in its most general ﬁ
|
form [15] is shown in Table 2.3. The complex scalar @, is AS.
chosen to force the biorthogonality conditions between the :‘

residual, rp, and another vector known as the biresidual,

I’,

rn. ©On enforces

“ea

4

o«

.
N
T A A

* LN LSS

(A

.
-
14

P TR B R LY ST R L T W e S T e T o v T Y e T T
BN oA o 8 Ve W D o e M W S o e 0T e i e N oA




Sttt gt A VAt V¥ Iat Syl Fad bat ¢ad St Sel Vatah Tt gyt R R e T L N LR T Y R S T Y ST T YO P Y X Y R P R R P ala oY
.

L 4
)
Y
X |
)
| 15
[}
v TABLE 2.3 '
a. §
GENERAL BICONJUGATE GRADIENT ALGORITHM ;
; AND RESULTING ORTHOGONALITIES. b
] P
)
) :
Po = ro = b - Axe
%
Po T To ‘
§; For k = 0,1,2,3... until convergence do g
¢ ®
] n
r Xk+1 = Xk + Ok Px 5
A Ik+1 = Tk - Ok Apk Tk+1 = Ix - Ox* ABpy v
! :
\ Pk+1 = rk+l + PBx px Pk+l = Ik+1 + Br* Px X
!
A End do
o where
¢
¥ ak=<Eklrk >/ < Px,Bpk >
'
"y -
Bk = < Fx+1,Tk+1 > / < Ik, rx >
X The resulting orthogonalities are:
'
u < ryx,ri >=0 i#k
)
"
' < Px,Apiy > =0 i#k
\
.4
h
£
X
)
E:
8
l
l
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W
o
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The complex scalar B, is chosen to force the biconjugacy

condition
< Pn+irAPn > = < pn+1,AHp, > =0 (2.21) .

Fletcher has shown that these relations lead to the

orthogonalit.es listed in Table 2.3. The initial
biresidual, ro, may be chosen in various manners. Fletcher
uses

reg = Aro (2.22),

while Jacobs [16] sets the initial biresidual to the complex
conjugate of the initial residuval, ro. This algorithm will
be used henceforth. The matrix A need not be Hermitian, but

if it is, the algorithm reduces to the conjugate gradient

algorithm. If the matrix is complex symmetric, then rj and
pi are complex conjugates of rj and pj, respectively. Only
one matrix-vector multiplication (MATVEC) operation per
iteration is then necessary. The algorithm has a potential
flaw if < Fj,ry > = 0, which could occur even though ||Tril]|
# 0 and |lryi!l # 0. This causes the algorithm to stagnate.
This rarely occurs in any of the practical problems that
have been studied. The biconjugate gradient and conjugate
gradient algorithms have a common origin, which can be seen

by using a set of N linearly independent

vt
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- PR R AR P S P AP . s P R st
AT RT AT NN AT N AN PN MJAAMMM’ e PR e e i 4




i Ave e A Al Al "R Al "t vald ? 1.8 LA el b Al A8 276 2 d 2N v P h ",
w - WA o e WU U Spe AhadY E0 ' R JY VAN e ", Y0 Mg Vg Wy

17
complex vectors, {p}. The expansion given by
N-1
X - X0 = Zai Pi (2.23)
i=0

allows the initial residual tc¢ be written as
N-1
ro = » @i Apj (2.24) .
i=0

Let another set ({z}, of N linearly independent complex

vectors also span complex N-space, cN, Forming the inner
products
N-1
< 24,10 > = 2: ai < z4,Api > (2.25),
i=0

and rewriting these in matrix notation gives

fm = < Zm,ro > (2.26) N

This matrix 1is analogous to the method of moments [2]
matrices, although the later are finite-dimension
approximations to infinite-dimensional Hilbert space. In
both cases, a weighted residual is made orthogonal to
another space. If this space is complete, the only choice
for the residual 1is zero. Equation (2.26) does not
initially appear to be of much help in obtaining the

solution to a N-dimensional system, since it is also N-
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dimensional. But if (2.26) can be forced to have a special
form, e.g. diagonal, tri-diagonal, or triangular, then tne
{a} may be easily solved for. If by means of orthogonal
vectors this matrix can be forced to have a dia-~zsnal form,

then the coefficients are given by

a; = S Efo 7 (2.27).
< z;,Ap; >

Replacing {z} by {p} gives the original conjugate gradient
method, by {Ap} gives CGNR, and by {P} gives BCG. Since the
residual at the nth iteration in BCG has been made
orthogonal to a n-dimensional Krylov subspace spanned by
{ro,ARry, (AH)2r,, ... .. (ARyn-1lr_ }, the algorithm has the
finite step termination property, and the roots of the
residual polynomial are the eigenvalues of the matrix.
BCG is equivalent to the non-symmetric Lanczos algorithm,

just as conjugate gradient is equivalent to the symmetric

Lanczos algorithm [17]) . The later equivalence may be seen
by letting
Rg = [ ry, ry0 o0y ] (2.28),
and
)
Ly
Py = [ pPor P1sr -+ Py ) (2.29); n
:
then g
Ry = Py By (2.30), f.i
2
N
N
)
o
L
(‘_‘
-y ™ S

g R AP ST AT g



- - .

PR

X332

i

>

s
L L I‘p

Y .l‘o .i

J. A

19
where
(1 _Bo
1 =B,
By = 1 . (2.31),
"Bx-z
L 1
which is obtained from
r, = p, = Boor Pomr (2.32)
Letting
A¢ = diagonal [ Iixgli, tizgll, oo llzggll ] (2.33),

and then forming

Ay

1 -H

Ry A Ry Ay = Ay

gives the matrix PxH A Pk which is diagonal by the conjugacy
of {P}. Thus, both sides of (2.34) are symmetric tri-
diagonal matrices. Since the residuals are orthogonal in

the conjugate gradient algorithm, then

AL RE Ry A = I, (2.35).

Thus (2.34) represents a unitary transformation of A to a

symmetric tri-diagonal form where the elements are given by

< Pi-2r A P:iy > . <“Pi-1r A pPjy >
2

2
ti,1 = 1Byl >
[ eI [y 1]

L LT AR R PP LTRSS B P R R 3 D IRV T R R I ] T B IRV R
3 ‘!{.‘ .".-R .‘. .""..".‘{- , -.(“’.‘-.-“ ..-N‘\ f v .. ‘F" Nt f'\' Y 9,00,

R

BE PY A Py By Ag (2.34),

(2.36),
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and

< Pj1r A Pjy >

tyi v = - By (2.37).

Itz 11 1l

Equating these elements with those from the Lanczos
algorithm [4,17] gives the formulas fcr o and B in the
conjugate gradient algorithm.

In a similar fashion for BCG, let

Ry = [ %y, Fyp o ov Ty | (2.38),

Px = [ Por P1r ... DPgy | (2.39),

1/2 1/2

A¢ = diagonal [ < ¥y, ry >'%, < Ej,r; >7°,

< Fyyrtry 372 (2.40),
Ry = By By (2.41),
-BK = BK* (242)1
and
Ry = Py B, (2.43).
From the biorthogonality of residuals and biresiduals,
AL Ry Re At = I, (2.44),
and from the biconjugacy condition,
B, A P, = diagonal [ < B,,Ap, >, < By, Ap, >
< Pyo1r APy > ] (2.45).
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Thus,
A Ry B Ry ARl = ALt By Bx A Py By Al = T (2.46),

where T is a symmetric tri-diagonal matrix, after applying
the similarity transformation of (2.36) to A. Equating
elements of T with the elements of the tri-diagonal matrix
resulting from the non-symmetric Lanczos algorithm [4] gives
the formulas for a and P in Table 2.2. As with conjugate
gradient and CGNR, BCG on a machine with finite precision
arithmetic will experience gradual loss of the
orthogonalities characteristic of the method. Unlike
conjugate gradient based algorithms, which are reducing the
error ncrm at each iteration, the effects of the round-off

error may be more pronounced with BCG.
2.4 Chebyshev Iteration Theory

The Chebyshev iteration with dynamic estimation of
parameters was developecd by Manteuffel [18] and implemented
in a software package (CHERYCODE) by Ashby {19]. In this
method, the eigenvalues of a square real matrix, A, of
order N, must lie in the right half of the complex plane.
For a complex matrix A of order N, the partitioned
equivalent real system of order 2N,

Re(z) —Im(a) { Re(x) } =[ Re(b) }
[ Im(a) Re(A)] Im(x) Im(b) (2.47),
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is formed, either with an explicit or implicit A, and
without any additional memory requirements. The eigenvalues

of this equivalent real system are the eigenvalues of A or

AH [4,20]. Thus the eigenvalues appear in complex conjugate
pairs or as repcated real values. The Chebyshev iteration
algorithm is shown in Table 2.4. The residual polynomials

are the scaled and translated Chebyshev pclynomial

o(2)

_T—KE)_ (2.48),

C

R,(A) =

where the nth order Chebyshev polynomial is

T,(z) = cosh (n cosh *(z)) (2.49).
This polynomial has zeros at

k7
z = * cos (?;) k =1,3,57,..n (2.50).

Since this method dces not attempt to place the zeross of the
residual polynomial at the eigenvalues of the matrix, it is
a true iterative method, without a finite step termination
property. Manteuffel showed that for each point in the
complex A plane, given the two parameters d and ¢, the
scaled and translated Chebyshev polynomials exhibit an

asymptotic behavior, and thus an asymptotic convergence
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TABLE 2.4

THE CHEBYCHEF ITERATIVE ALGORITHM

-

e = b - Axg

Y e S SN

DXO = (l/d) o

2

.). -

X1 = Xo *+ Dxg¢

For k = 1,2,3... until convergence do

rx = b ~ Axg )
1}

d d :
Tk (E‘) Tk-1 (E) W,
q Tk * Dxk-1 o
Tx+1 (g) Tk+1 (g)

2
ka—c

s e

Xk+1 = Xk t Dxg

)

End do

P AL
ARG S

1

L d

7 {'{'I.f‘ e R

oot

-

ol 4

- g v v -
55

TS AT

s's

]

T

20

e

~ q ~ ~' o NV e [ _.- T .-' e ¥ e W oY n " \r_ (\r\,\'r ~“-’ \"..f‘-\’ \{ \-“_‘ -:\f\ \-'._-'\-ﬂ,\-"\{__-‘_'-f,,\f ‘_(‘.-',\-"_.r _.J'¥-’\-F\-"\. ~v{‘,~-'\-'\f \r\-\
A DY O WY SN T Nl A O B, Bl afe el ol Aol oSt cale alle sl i) Nt il

o )



PR

B T T Y I Y O R OO O Y S PR PR T RV TSN Aa e oS0 ie” b by W gt oot i AR R aSh B e U APELE B B N Gl Rl dul Hab ShR S S

L% R LT g0 Y S 4

LA

‘ 24 N
factor is given Lty ]
2 241/2 »
: : W1/ (@-A) + ((@a-A)° -c9)
r(A; = 1lim IR, (MW" = I PV I "
n—eo d + (d° -¢) "
(2.51). :
,
>
The rate of convergence is governed by the eigenvector ‘4
\
decomposition of the initial residual and the convergence >
factor evaliuated at each of the eigenvalues of the H
equivalent real system. As the number of iterations becomes X
4
large, the asymptotic convergence factor gives the reduction ~)
of the appropriate eigenvector obtained in one iteration of ;1
. v
the algorithm. Figure 2.2 shows the asymptotic convergence A
W
]
factor for the choice of d equal to two and ¢ equal to one. ﬁ
Each of the curves representing a constant value of the ‘
'
convergence factor is an ellipse with foci at d-c, d+c. f
>.
The ellipse passing through the origin always has a :
¢
convergence factor of 1. Thus, if the matrix has all of its n
eigenvalues within this ellipse, the algorithm is guaranteed :f
]
to converge. The CHEBYCODE implementation of the Chebyshev o,
iteration also finds the four extremal eigenvalues of the 4
matrix, and uses this information to modify the parameters d A
I-I'
and c to obtain the smallest asymptotic convergence factor =
o
at those extremal eigenvalues. Note that this factor is the
worst bound, since in Figure 2.2, zeros of the residual g
polynomial are found on the rezl axis segment (1,3).
M
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2.5 Comparisons and Summary

The three algorithms presented are but three of many

possible algorithms based on a residual polynomial and an

) expanding Krylov subspace. The algorithms differ in the
initial residual and the iteration matrix from which the

Krvlov subspace 1is obtained. These differences are

highlighted in Table 2.5. The motivation for choosing

X different iterative methods stems from the fact that simple
examples can be constructed in which each of the three

iterative methods will show superiority over the other two

P

in some sense.
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TABLE 2.5

COMPARISION OF THE THREE ITERATIVE METHODS

CGNR
Initial residual Yo
Iteration matrix AHp
Number of Matrix-
vector operations
per iteration 2
Quantity
minimized [ lxnll
Theoretical finite
termination Yes

* Equivalent Real System

BCG

o

None

Yes
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CHEBYCODE

ro of ERS*

A of ERS

Maximum of the
convergence
factor on the
spectrum of ERS

No
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R EELY

3. THE TREATMENT OF MULTIPLE EXCITATIONS

BY ITERATIVE METHODS
3.1 Intrcduction

1 When solving the same matcix equation for multiple
! excitations, the efficiency of Gaussian elimination with
partial pivoting has been considered better than any
iterative method [4]. The decomposition of a matrix into
' lower-upper (LU) triangular form has the advantage that the
factorization of the matrix need only be done once and then
! any number of excitations can be treated by one forward-
elimination operation and one back-substitution operation for
each excitation. The factorization takes N3/3 complex
floating point operations (flops) and the back-substitution
and forward-elimination each require N2/2 flops. Thus the
B required work for M excitations is approximately N3/3 + M(N2)
E fiops. Also, the excitations can be generated one at a time
: and additional storage requirements are not necessary.
The main concern of this chapter is the solution of
@ systems which, due to symmetries of formulation, have
) considerable redundancy and are sparse in the sense that all
the elements of the matrix need not be stored, e.g. Toeplitz
or block-Toeplitz matrices or slightly perturbed versions of
these matrices. For these types of systems, the use of

iterative methods results in savings in storage requirements

D)

1

R and hence ability to treat larger problems. However,
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iterative methods have the drawback of not being able to

treat multiple excitations with as much ease as LU

-
&

? decomposition. To date, no effective iterative algorithm for

“ the treatment of multiple excitations has been developed.

g This chapter presents extensions to the conjugate ;
;§ gradient and biconjugate gradient methods for simultanecusly ¢
KN treating multiple right-hand sides. It will be demonstrated

) that these result in significant time savings as compared to ¢
j‘ treating each excitation individually. It should be noted at )
‘" ,
o

2 this point that scattering problems such as a periodic screen

where the equivalent matrix is a function of the incidence ‘

angle are not amenable to treatment by the algorithm
presented. Attempts to produce efficient algorithms for 4
these problems have usually centered around using a function \
of the solutions from previous excitations to generate the
initial guess for the next excitation's solution. Data
] presented later in this chapter will show that even with a
" matrix which is not a function of the excitation, an initial
guess for the solution can reduce the norm of the initial o
,3 residual substantially, but usually at the same time, slow
% the convergence rate.
B The iterative methods of Chapter Two generate sequences
" of vectors from a Krylov space which will span the solution
§ space. In practice, the precision of the computing machinery
{ is a limiting factor and the sequence loses orthogonaliity due ¥

to the propagation of round-off errcr. This phenomenon is

dependent on the machine used, the condition number of the
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matrix, and the excitation. The extent to which iterative
methods can be used to generate orthogonal sequences of
vectors and thus treat the multiple excitation problem is
examined in this chapter. The applications of interest are
the electromagnetic scattering problems, for which hundreds
of excitation angles are often required.

The major portion of the computation required by
iterative methods is the operation of a matrix or 1its
equivalent upon a vector (MATVEC). For problems allowing a
Fourier transform approach (i.e., systems that are slightly
perturbed Toeplitz or circulant), the number of floating
point operations per MATVEC can be as low as N (log N), where
the logarithm is of base two and N is the order of the
equivalent matrix. For N greater than thirty-two, even this
formulation has the MATVEC operation dominating the execution
time. The primary motivation for treating multiple
excitations simultaneously is to reduce the overall number of
MATVECS. This can be accomplished if the additional
excitations can be treated using the vectors generated by the
MATVECs in each iteration.

The two methods used are the conjugate gradient method
aprlied to the normal equations (CGNR) and the complex
biconjugate gradient method (BCG). 1In both algorithms, the
systems of matrix equations are solved by maxkxing the
residuals of every system orthogonal to an expanding sequence
of vectors. The additional work at each iteration in the

multiple excitation algorithm includes the computation of the
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]

required coefficient for each solution, and the updating of
the residuals and solutions. The vectors are generated by
iterating on a composite system, until either that system is
solved (usually with a smaller error tolerance than required
for the individual systems) or until the direction vectors
significantly lose orthogonality. The composite system is
obtained by superimposing all the excitations of interest,
thus ensuring every eigenvector of the iteration matrix
. needed for any solution is present [21]). The algorithm then
restarts by using the solutions obtained up to this point as
i the next initial guesses, and by iterating directly on the
system with the worst error until it is solved to the desired
accuracy. The same procedure is repeated after every
restart. For the conjugate gradient based method (MCGNR),
the direction vectors generated after iLhLl .estart are again,
in theory, mutually orthogonal. They lose orthogonality with
the previous set of direction vectors one by one in a
predictable manner. Similar sets of orthogonalities are
shown for the biconjugate gradien; based algorithm (MBCG).

The restart subroutine also recomputes the residual error

T

norm of all systems, outputting solutions which meet the
accuracy criterion, and removing those systems from further

processing.
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3.2 MCGNR Theory

In theory, allowing CGNR to take the full N iterations on
a system will generate a set of direction vectors from a
Krylov subspace which are mutually orthogonal and span cN,

Thus, representing the mth solution at the nth iteration as

n—1

z n('“) (3.1),

i=0

gives the mth residual at the nth iteration as

n-1
2 _ Y ap, .2

i=0

Forcing this residual to be orthogonal to the set of
direction vectors, ({Ap}, generated thus far would normally
involve finding n coefficients in the set {Nin(™}. But, the
orthogonality of {Ap} implies the coefficients can be
computed individually. The coefficients are

W < Api,b&A>

Nip = ————— i=20,1,2,...n"1 (3.3),
| [Ap; | ]

which are not dependent upon the value of n. Thus, only one

coefficient, Mp-1¢™, need be calculated at the nth
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iteration. Furthermore, (3.2) can be written as

(m) (m) (m)

rn = rn-—l - nn—l Apn—l (3.4),
giving
(m)
< Ap,._y,r,y >
) = —_—— (3.5).
I AP, ||

Thus, CGNR can treat multiple right hand sides by including

in each iteration the computation of MNu-1(™ (note the
computation of ||App-1!12 is already done for Qu-;) and
updating the unknowns xp (M) and the residuals rp (M)  The

complete algorithm is given in Table 3.1.

CGNR will terminate before N iterations if the excitation
is orthogonal to one or more eigenvectors of AAH, This
situation poses a problem for the algorithm, as was shown by
Peterson ({21], when using the direction vectors generated by
an excitation which had even symmetries. The direction
vectors also had even symmetry and thus could not span the
entire solution space for excitations containing an odd
symmetry portion. This motivates the use of the composite
system as the initial system for generating the direction
vectors. The composite system is obtained by summing all the
excitations of interest, thus ensuring in a stat;stical sense
that the coefficient of every eigenvector of the iteration
matrix needed for any solution is non-zero. The algorithm

then restarts by using the solutions obtained up to this
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TABLE 3.1

CGNR BASED ALGORITHM FOR MULTIPLE EXCITATIONS (MCGNR)

ho (M = aHy (m) = AH( b(m - Ax,(m )

o N Y ¥ oA v v

Po = he of iterated system

) For k = 0,1,2,...ur.2il convergence do

**x Jterated system ***
Xk+1 = Xk t Ok Pk

ry+l =rx — Ok Apk

hg+1 = Afrgy

avstata A, €
-

hix+1 + Bk px

Pk+1

**x*x Non-iterated systems *xx*

v T N

rge1 ™ = rpm — M (™ Apy

R AR PR Y

lhel 12 / 11Apkl 12

i

Ok

BK =

M ™ = < Apy, rx™ > / | |apkl |2

| lhg+1112 / |1hkli2

the restart compute

r(m) = b -A x(m)

for all systems and repeat the above routine ~
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point as the next initial guesses, and by iterating directly

D

on the system with the worst error until it is solved to the

desired accuracy. The same procedure is used after every

Ay

restart. The use of the system with the worst error is

3

motivated by the fact that the direction vectors up to this

Py

point in the procedure have not spanned that solution space

well.

=

Before the first restart, the orthogonalities present in

-

g2

the CGNR alcorithm are given 1in Table 2.2. The
orthogonalities also hold between all vectors generated after
the restart. There exist orthogonalities between the sets of
vectors before and after the restart. Let the vectors before

the restart be denoted as hjfeld), r;(old) p.(cld) and the

Mg 5 T e gn g% B b g

vectors after the restart as h'j(new),  rrj(new) pro(new) — The

‘I

¢,

superscript emphasizes that the system number may change, and

y vy
.

S

the prime denotes vectors that are generated after the

restart. Recalling that the residual polynomial for CGNR 1is

b]
R,(AAH) = Y c,, (%) (3.6),

n=0

"~

s
& 2y "

then one may write

3

,(rew) Ho\n ,(new) )
hy = Z c,y (A"R)" h (3.7). X
n=0 hY

\\
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Thus, the first othogonality is

,(new)  (o1d) ,(new) (o1q)

cn) by > =<hy L) et @A) By > (3.8).

n=0

The initial residual after the restart, r'y(Rew), equals
rm(©1d), the prior residual available when the algorithm was
stopped at the mth iteration to do the restart. Zguation

(3.8) then becomes

J (o1q)

heﬂ H n
z Cps* < £, A(R'A) hy > (3.9).

n=0

The relationships obtained from Table 2.2,
hy = p; ~ By-1 P11 (3.10),

1
A'ap; = == (hy =) (3.11),
1

can be rewritten as

hy £( Pi1rPj; ) (3.12),

AHApi = g( hj_l hi+l ) (313)

denoting that h; is a linear combination of pj-1, pi and
AHAap; is a linear combination of hj, hj+1. Working on the

powers of the iteration matrix, gives

(a*2)" n, = ") £( py_y,p; )

1—1
(AHA)P gf hy_;,h;,hiy )

1

n-1

(a"a)

£( Piy/Pj—1+Pi/Pisr ) (3.14).
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Continuing this process inductively gives
(AHA)n h; = £( Pi-n-17 =+ + 1 Piun ) (3.15),
so that Equation (3.8) becomes
,(new) (o1d) 2 (new)
< hj ’hi > = z an* f( < Tn ’Api—n—l >,
| n=0
' (new)
oo < Ty BDPi, > ) (3.16).
l Realizing that Equations (3.2) and (3.5) guarantee that
(new) (o1q)
<r, ,Ap; >=0 i <m (3.17),
i then it follows that
,(new) (o14d)
< hj /by >=0 i+j < m (3.18).

Equation (3.18) is the first of <the set of observed
orthogonalities

The second set of orthogonalities involves the direction
vectors, {Ap}, before and after the restart. Since the new

direction vector can be written as

(new) 1 4 . ,(new)
j+1 . (new)
= a,, @Y r, (3.19),
. n=0
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the inner product of the two sets of direction vectors is
,(new) (014) Ehd {(new) oD (01d)
< Ap;  ,Ap; > = z dpy* < Ip ,(aa")" ap, >
n=0
(3.20).

Recognizing that the first term of this summation is zero for
i less than m and using Equation (3.11) after changing the

summation index, gives

,(new) (o1q)
< Apj IApi > =

J
d * (new) (01q)

o
k=0 i
(new) Bk (o1d)
-<r, ,A (@A) h, > (3.21).
This expression is of the same form as Equation (3.9),

leading to the result

,(new) (014d)
< Apy; ,Ap; >=0 i+j < m-1 (3.22).
The third and fourth sets of orthogonalities are proved in

a similar manner. They are:

,(new) (o1q)
<r; ,Ap; > i+3 < m (3.23),

,{new) (o1d)

< Bp; ,r; > =0 ity < m (3.24).

These orthogcnalities are illustrated in Figure 3.1, for the

case of restarting at the fifth iteration. The direction

vectors in the set after the restart lose orthogonality with
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Ap'

Ap

o T rr = rliasnnmordibon-oyliior sy e A i
e
O A N M < VIO A N M < u)
[Te) I R T
<l X Y < | X X x| %] =
ol x| x x| % B IR x| %] =
NEIRIE: )| =] % RPN VY V) x| %
I EI RIS | x| % Al e el x| x " <«
o] x| x| x x x )| x| % of x| x| x| x| = % |
< x| % ] x| x| x| x| % x| x| w*
™ MEIEIE RIS | x| %]~
~ MEIEIES o x| x| x x| xl x| x]o
— % | x| x| % % . N EIE <«
o $| % x| x] x| % x| % | % x| x ™
o | xf x| = o~ M‘
O «H N M <« I O M < N
N )| x| el x| x| x -
H wl x| x| o] x| x| x| o
O d N M QIO 1+ N M «
& 3

Orthogonalities between vectors in MCGNR.

x denotes orthogonality.

Figure 3.1

The restart occurred

after the fifth iteration.




.i‘ MR N N

1

X . : oV o N S N A T N L L L PR P TR LI L AT L EO AR R OEY
AT T A T g Y O e O S iy A A Tt ST I I I T N T Vo Y e

TODUCR K X

1M T A N e g* s fat TP\ TR TSR PO I T o ¥ ™ e W A% WY

40

the set generazted before the restart in a predictablc manner
according to (3.22). Figure 3.2 shows the orthogonalities
detected with multiple restarts. It is interesting to note
that the orthogonalities between the sets of vectors before
the first restart at the fifth iteration and after are
maintained even though another restart occurs two iterations

later on another system.

3.3 MBCG Theory

From Table 2.3, two of the orthogonalities in the BCG

algorithm are
< ryx > =0 o # Xk (3.259),
< PyAp, > = < py,A'p, > = 0 3%k (3.26).

As long as the {r} maintain linear independence, the method
has a finite termination property. It is easy to see that if
rxy 1is linearly dependent on the previously generated {r},
then < Tyx,rx > is zero and thus O is zero and the algorithm
stagnates. This has rarely occurred in any of the
electromagnetic scattering problems studied.

Thus, barring breakdown, N iterations of the BCG
algorithm generates a set of direction vectors from a Krylov

subspace which span CN, Representing the mth solution at the
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i n-1 [N
b (m) (m)
. Xy = Z Min Pi (3.27), N
[ = ¢
gives the mth residual at the nth iterat:on :
p b
_ n—-1 ::
(m) (m) (m) “
‘ r,, =b" - Z Nin AP; (3.28). &
i=0
)
4 )
f: Forcing this residual to be orthogonal to the previously ﬁ
1, - ' . f f s v
; generated {p} would normally involve finding n coefficients '
. in the set {Nin‘™}. But, the orthogonality of < pPj,Apx > -
‘,0 g
) implies the coefficients can be computed individually. The N
I\ v
¢ coefficients are N
) - (m) .
. < p;yb" >
3 P L i=0,1,2,...0-1 (3.29", ;
- - »
b,
which are not dependent upon the value of n. Thus, only ¥
Nn-1{™ need be calculated at the nth iteration. .
) )
' Furthermore, Equation (3.28) can be written as
-
b rf,’“) = rff“_)l - nf,’“_)l Ap._, (3.30), N
k)
; N
) giving "
) 1-
- (m)
. < Pp-1rLpy > h
? n(nnl)l = L T (331) .:
< f)n—l'Apn-l > N
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Thus, BCG can treat multiple right hand sides by including in
each iteration the computation of MNp-1(™ ( note the
computation of < pp-1,App-1 > is already done for Qp-1 )
and updating the unknowns xp(™ and the residuals rp(™ . The
complete algorithm is given in Table 3.2.

For the same reasons given in the previous section, the
composite system 1is used as the 1initial system for
generating the direction vectors. The composite system is
obtained by summing all the excitations of interest, thus
ensuring in a statistical sense that the coefficient of every
eigenvector of the iteration matrix needed for any solution
is non-zero. The algorithm then restarts by using the
solutions obtained up to this point as the next initial
guesses, and by iterating directly on the system with the
worst error until it is solved to the desired accuracy. The
same procedure 1is used after every restart. The use of the
system with the worst error is motivated by the fact that the
direction vectors up to this point in the procedure have not
spanned that solution space well.

Before the first restart, the orthogonalities present in
the BCG method are given in Table 2.3. These orthogonalities
also hold between all vectors generated after the restart.
There exist orthoconalities between the sets of vectors

before and after the restart. Let the vectors before the

restart be denoted as rj(old), fj(Old)’ pj(Old), !'gj(old) and the

vectors after the restart as r';(new) —rr',(new) —pr.(new),

p'y(nev) . The superscript emphasizes that the system number
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TABLE 3.2

BCG BASED ALGORTITHM FOR MULTIPLE EXCITATIONS

ro(m) = ( b(m) - Axo(m) )

Po ro of iterated system

Po = o = Iy  of iterated system
For k = 0,1,2,...until convergence do
**x* Tterated system ***
Xk+1 = Xk + Ox Pk
Tk+1 =Tk — Ox Apxk
Tk+l =fx - Ok AFpPy
Pk+1 = Tk+1 + Bx Px
Px+1 = Tk+1 + Pk Px
*** Non-iterated systems **x*
Kk+1 ™ = xp (M + M@ py
rr+1 @ = rp @™ - My M Apy

End do

where
ox = < Tx,rx > / < Ppx,Bpx >
BK = < E‘k+1,rk+1 >/ < fk,rk >

k™ = < Py, rx™ > / < Py, Apx >

At the restart compute
riM) = p -ap x(m

ror all systems and repeat the above routine

(MBCG)
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may change, and the prime denotes vectors generated after the
restart.
Recalling that the residual polynomial for BCG is

i

R,(d) = Z cpy A (3.32),

k=0

then one may write

i

,(new) Kk (new)
ri = Z Cki A Tn (3.33),

k=0

using the fact that the initial residual after the restart,
r'ol(new), equals rp(Pe%), the prior residual available when
the algorithm was stopped at the mth iteration to do the

restart. The first observed orthogonality is
_ (o14) ,(new)
< Py e >
i

_ (o1d) X (new)
= Z Cxi < Py PA >

k=0
i

HK - (o1q) (new)
=z cki<(A) pj r T > (3.34)
k=0

The relationships obtained from Table 2.3

ry = I_Dj = By* 55-1 (3.39),

_ 1 - -
A'py = [ ry = 750, ) (3.36),
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can be rewritten as
r; = £( psy, Py ) (3.37),
A'py = g( Ty Ty ) (3.38),

denoting that fj is a linear combination of ?j—l and Dj, and
that Afpsy is a linear combination of T3y and Fj4+1. Working on

the powers of AH gives

H)k‘l H

@ 5, = @Y7 a

AN g( T, T4 )

(AH)k—l

£( §j—1!§jlﬁj+l ) (3.39).
Continuing this process inductively leads to
(AH)K Ej = f( Ej—k’ . e o,§j+k ) (3.40)[

so that Equation (3.34) becomes

_ (o1d) ,(new)

< Pj Ty >
L _ (o1a) (new)
= 2 oy £l < Pk + T >,
k=0
_ (o1d) {new)
++< Pk ¢t To > ) (3.41).

Realizing that the algorithm expressed in (3.27) through
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(3.31) guarantees
_ (o1d) (new)
<Py I, >=0 j <m (3.42),
then
_ (o1a) ,(new)
< py > =0 i+j < m ' (3.43),

which 1is the first of the set of orthogonalities that were

observed. Using this result and (3.37), the second set of
orthogonalities,
_ (c1d) ,(new)
<ry ,r >=0 it+j < m (3.44),
follows immediately. Applying
,(new) ,(new) , (new)
Py = Iy + By pia (3.45)
recursively leads to
,(new) : ,(new)
Pi = Z dy; Ty (3.458),
k=0
so that using (3.44) gives
_ (o1d) ,(new)
< ry /Di > =0 i+y < m (3.47).

The other observed sets of orthogonalities are obtained by

using (3.37) and (3.38), along with the sets just presented.
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They are:
§ - (o1d) (new)
<A E, ry >=0 i+j < m-1 (3.48),
_ (o14) ,(new)
< py /A py >=0 i+ < m-1 (3.49),
_ (o1d) (new)
< Iy /A py >=0 i+j < m-1 (3.50),
. (o1d) ,(new)
<A p; ,Ap; >=0 i+ < m-2 (3.51).

The orthogonalities given by Equations (3.44) and (3.49) are
illustrated in Figure 3.3, for the case of restarting at the
fifth iteration. The vectors in the set after the restart
lose orthogonality with the set generated before the restart
in a predictable manner according to (3.44) and (3.49).
Figure 3.4 shows the orthogonalities detected with multiple
restarts. It is interesting to note that the orthogonalities
between the sets of vectors before the first restart at the
fifth iteration and after are maintained even though another
restart occurs two iterations later on another system. The

other sets of orthogonalities exhibit a similar behavior.

3.4 Results

The first problem used with these algorithms was the
transverse electric (TE) plane wave scattering from a
perfectly conducting hexagonal cylinder as illustrated in
Figure 3.5. The cylinder is infinite and invariant in the =z

direction. The p:roblem was formulated by the method of
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Figure 3.3 Orthogonalities between vectors in MBCG.
x denotes orthogonality. The restart occurrec
after the fifth iteration.
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Ap'' 2 b'4 ¢ | % oN
- 3 L X [ XX X %

Figure 3.4 Orthogonalities between vectors in MBCG.
x denotes orthogonality. The restarts occurred
after the fifth and seventh restarts.
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moments on the electric field integral equation using
seventy-eight triangular basis and seventy-eight pulse
testing functions [(22]. Since the problem has six fold
symmetry, incident angles of zero, five, ten, fifteen, twenty
and twenty-five degrees were used.

Initially, rather than use the composite system to
generate the first set of direction vectors, the system
representiny the fifteen degree incidence was used as the
initial system in the conjugate gradient based algorithm
(MCGNR) . It was followed by the zero, five, ten, twenty, and
twenty-five degree incidence systems, in that order. Table

3.3 shows the residual norm for each system at the restarts,

using Equation (3.5) for Mp-1{™ ., Table 3.4 shows the same

information, but with TMp-1 ™ calculated by Equation (3.2).

Since the direction vectors lose orthogonality after the
first restart, the assumption necessary for Equation (3.2) no
longer holds. Thus, at the third restart, the residual norm
is worse than at the second restart, indicating that Equation
(3.5) should be used. The number of iterations for each
system is approximately twenty-five, the number typical when
treating each excitation individually. Cecmparing the number
of iterations with those of Table 3.3 shows that after each
restart, a fewer number of additional iterations are needed
to obtain a solution for the iterated system. In spite of
the reduction of total iterations from 150 to 100, the run
time only decreased from 5.78 CP seconds to 4.26 CP seconds

on the CDC Cyber 175. This deviates slightly from a
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TE SCATTERING FROM A HEXAGONAL CONDUCTING CYLINDEE. BCG

BASED ALGORITHM,
NUMBER OF

CUMULATIVE NUMBER OF

AT EACH OF THE RESTARTS.
ITERATIONS PERFORMED BEFORE RESTARTING, THE
ITERATIONS,

LISTED ARE THE

THE SYSTEM WHICH THE

ALGORITHM WAS USING TO GENERATE THE DIRECTION VECTORS

(ITERATED SYSTEM),

RESIDUAL NORMS,
SYSTEMS.

Iterations

Total Iterations

Iterated System
Residual Norm

Worst System
Residual Norm

Best System

Residual Norm

Iterations

Total Iterations

Iterated System
Residual Norm

Worst System
Residual Norm

Best System

Residual Norm

TN

o
T A R ! @".A‘w\‘.n\_a_n

THE SYSTEMS WITH THE BEST AND WORST

AND THE RESIDUAL NORMS OF THESE THREE

restart 1

27
27
15 deg.
7.25E~5
0 deg.
0.462
10 deg.

0.203

11

82
10 deg.
5.57E-5
25 deg.
7.51E-3
20 deg.

1.66E-3

......

THE CDC CYBER 175 USED 4.26 CP SECONDS.

restart 2 restart 3
26 18
53 71
0 deg. 5 deg.
7.27E-5 9.41E-5
25 deg. 25 deg.
0.171 0.0350
5 deg. 10 deg.
0.0451 2.24E-3
restart S restart 6
10 8
92 100
20 deg. 25 deg.
9.22E-5 7.82E-5
25 deg.
7.38E-4
25 deg.
7.38E-4
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TABLE 3.4

TE SCATTERING FROM A HEXAGOILL CONLUCTING CYLINDER. CGNR
BASED ALGORITHM, AT EACH OF THE RESTARTS. LISTED ARE THE
NUMBER OF ITERATIONS PERFORMED BEFORE RESTARTING, THE
CUMULATIVE NUMBER OF ITERATIONS, THE SYSTEM WHICH THE
ALGORITHM WAS USING To GENERATE THE DIRECTION VECTORS
(ITERATED SYSTEM), THE SYSTEMS WITH THE BEST AND WORST
RESIDUAL NORMS, AND THE RESIDUAL NORMS OF THESE THREE
SYSTEMS. THE CDC CYBER 175 USED 5.30 CP SECONDS.

P

restart 1  restart 2 2 restart 3

Iterations 27 26 20
Total Iterations 27 53 73
Iterated System 15 deg. 0 deg. 5 deg.

Residual Norm 7.25E-5 7.27E-5 6.98E-5
Worst System 0 deg. 25 deg. 10 deg.

Residual Norm 0.462 0.175 0.274
Best System 10 deg. 10 deg. 25 deg.

Residual Norm 0.203 0.0625 0.169

restart 4 Xestart S restart 6

Iterations 25 25 27 )
Total Iterations 98 123 150
Iterated System 10 deg. 20 deg. 25 deg.

Residual Norm 8.75E-5 8.29E-5 7.14E-5
Worst System 20 deg. 25 deg.

Residual Norm 0.375 0.525
Best System 25 deg. 25 deg.

Residual Norm 0.329 0.525

|
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proportional relationship, and is due to operations that are ;
»e

Y

done by the program which may be considered as overhead. 2:
p

by

Figure 3.6 shows additional detail of the residual norm .

<

5

of all systems at each iteration. Since the solutions vary H
-3

continuously as a function of the incidence angle, one sees ;-
1”,

that the direction vectors from the fifteen degree system ;
hood

reduced the residual norm at the first restart of the ten and :'
’..

twenty degree systems more than the other system. This A

£
Yoo
-

phenomena is also present at the other restarts. The shape

5

of the curves before the first restart at the twenty-seventh :
iteration agrees with that reported by Peterson [21]. %ﬂ
<
The same problem was solved using the BCG based éy
algorithm, (MBCG). The values of the residual norms &zt each ;
restart are shown in Table 3.5. Although the decrease in the i?
number of additional iterations is not monotonic as it was ﬁ:
for the CGNR based algorithm, there is a substantial ﬁt
decrease. The Cyber 175 took 3.91 CP seconds to solve this E‘
problem, a very slight edge over the CGNR based algorithm ‘;1
times discussed above. On average, BCG would take ?J
approximately twenty-one iterations to solve each system :f
individually, compared with twenty-five iterations for CGNR. %:
Although this matrix is not ill-conditioned, the difference 3
is attributable to BCG and CGNR generating from different §$
Krylov subspaces. E&
The second problem used was the TE plane wave scattering ;E
from a seven wavelength wide flat strip as illustrated in %‘
Figure 3.7. The strip is infinite and invariant in the z E
:.f

h
.1, v”:
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2o LAl

3 Figure 3.6 Residual norms of all systems vs. iteration .
number for the hexagonal cylinder problem.
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TABLE 3.5

TE SCATTERING FROM A HEXAGONAL CONDUCTING CYLINDER. BCG
BASED ALGORITHM, AT EACH OF THE RESTARTS. LISTED ARE THE
NUMBER OF ITERATIONS PERFORMED BEFORE RESTARTING, THE
CUMULATIVE NUMBER OF ITERATIONS, THE SYSTEM WHICH THE
ALGORITHM WAS USING TO GENERATE THE DIRECTION VECTORS
(ITERATED SYSTEM), THE SYSTEMSE WITH THE BEST AND WORST
RESIDUAL NORMS, AND THE RESIDUAL NORMS OF THESE THREE
SYSTEMS. THE CDC CYBER 175 USED 3.91 CP SECONDS.

restart 1  restart 2 2 restart 3

Iterations 21 21 20
Total Iterations 21 42 62
Iterated System 15 deg. 0 deg. 5 deg.
Residual Norm 5 22E-5 7.95E-5 1.65E-5
Worst System 0 deg. 25 deg. 25 deg.
Residual Norm 0.515 0.167 0.126
Best System 10 deg. 10 deg. 10 deg.
Residual Norm 0.245 5.23E-2 9.20E-3

Iterations 10 17 9
Total Iterations 72 89 98
Iterated System 10 deg. 20 deg. 25 deg.
Residual Norm 7.71E-5 2.08E-5 9.33E-5
Worst System 25 deg. 25 deg.
Residual Norm 2.84E-2 4.54E-3
Best System 20 deg. 25 deg.
Residual Norm 6.31E-3 4 ,54E-3
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Figure 3.7

!
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Geometry for the perfectly conducting flat strip.
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direction. The problem was formulated by the method of
moments on the electric field integral equation using
seventy-nine triangular basis and seventy-nine pulse testing
functions. Eleven incidence angles of one, five, ten,
twenty, thirty, forty, fifty sixty, seventy, eighty and
ninety degrees were treated. In this problem, the composite

system was used as the initial system. The desired residual

norm for all systems, except the composite-r system, was

1.0E-4. Tables 3.6 and 3.7 show the convergence of the

L aar—an e 3k <

MCGNR and MBCG algorithms, respectively, on a CDC Cyber 175
machine with sixty bit precision. 1In both cases thL Jdesired
residual norm for the composite system was 1.0E-12. On
average, CGNR for a single excitation required thirty-seven
iterations to solve this order seventy-nine system to a
residual norm of 1.0E-4. Thus, the CGNR based multiple
excitation algorithm required only twenty-four percent of the
number of iterations that would have been necessary had each
cf the excitations been treated separately. For the same
problem, the BCG for a single excitation required twenty-six
iterations, on the average. The BCG based multiple
excitation algorithm required only nineteen percent of the
number of iterations that would have been necessary had each
of the excitations been treated separately. This translates
into a savings in overall computation time of approximately
fifty percent for both algorithms, based on execution times.
To test the effect o0f changing the desired residuzl norm

for the composite system, these two algorithms were repeated

e e T T e T e T e T T T e N e W T R Y A e R S N N A R P e N s S R B ) '.‘_'.' T '.' A R
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[ TABLE 3.6

]

" TE SCATTERING FROM A FLAT STRIP. DESIRED COMPQSITE SYSTEM

| RESIDUAL NORM IS 1.0E-12. CGNR BASED ALGORITHM, AT EACH OF

R THE RESTARTS. LISTED ARE THE NUMBER OF ITERATIONS PERFORMED s
N BEFORE RESTARTING, THE CUMULATIVE NUMBER OF ITERATIONS, THE

SYSTEM WHICH THE ALGORITHM WAS USING TO GENERATE THE
DIRECTION VECTORS (ITERATED SYSTEM), THE SYSTEMS WITH THE
) BEST AND WORST RESIDUAL NORMS, AND THE RESIDUAL NORMS OF '
o THESE THREE SYSTEMS. THE CCC CYBER 175 USED 7,19 CP SECONDS.

’ i
[) <
&
¥ restart 1 restart 2 restart 3 restar:t 4
' Iterations 69 9 10 8 )
: Total Iterations 69 78 88 96 :
-, Iterated System composite 60 deg. 50 deg. 1 deg. h

Residual Norm 2.2E-13 5.5E-5 6.2E-5 7.9E-5
,* Worst System 60 deg. 50 deg. 1 deg. 1 deg.

\]

B Residual Norm 3.0E-1 8.6E-3 3.0E-3 7.9E-5 :
5 Best System 10 deg. 30 deg. 80 deg. 30 deg.
L
; Residual Norm 2.3E-2 4.1E-3 7.6E-4 4 .0E-5
.l.
" |
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TABLE 3.7

. TE SCATTERING FROM A FLAT STRIP. DZSIRED COMPOSITE SYSTEM
’ RESIDUAL NORM IS 1.0E-12. BCG BASED ALGORITHM, AT EACH OF
THE RESTARTS. LISTED ARE THE NUM3ER OF ITERATIONS PERFORMED
BEFORE RESTARTING, THE CUMULATIVE NUMBER OF ITERATIONS, THE
SYSTEM WHICH THE ALGORITHM WAS USING TO GENERATE THE
DIRECTION VECTORS (ITERATED SYSTEM), THE SYSTEMS WITH THE
BEST AND WORST RESIDUAL NORMS, AND THE RESIDUAL NORMS OF
THESE THREE SYSTEMS. THE CDC CYBER 175 USED 3.94 CP SECONDS.

restart 1  restart 2 2 zestart 3

Iterations 49 4 2

Total Iterations 49 53 55
E Iterated System composite 1 deg. 80 deu.
: Residual Norm 1.1E-13 6.4E-5 3.3E-5
i‘ Worst System 1 deg. 80 deg. 10 deg.
Residual Norm 5.6E-2 1.5E-3 7.9E-5
l Best System 30 deg. 5 deg. 60 deg.
3 Residual Norm | 2.7E-2 3.0E-4 1.6E-5
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on the same problem. For the MBCG algorithm, Tables 3.8 and
3.9 show the effect of changing the desired residual norm for
the composite system to 1.0E-7 and 1.0E-6, respectively.
Comparing the results of Tables 3.7, 3.8, and 3.9, the best
strategy is to solve the composite system to the lowest
possible residual norm consistent with the precision of the
computing machinery and generate the full set of vectors to
span cN., To estimate the orthogonality of the entire set of

vectors, at every iteration

< py/Apy > |

RORTHO = log,, | (3.52)
10

I1psl | | 1Apgl |

was evaluated. This measure is easily computed. Also, it
has been shown ([1l4] that if an iterative method based on a
three term recursion loses orthogonality between elements of
a set of vectors, this loss is fairly rapid. Figure 3.8
shows the values of Eqguation (3.52) for the first 48
iterations of the system used for Table 3.7. The
orthogonality of the vectors 1s still satisfactory, but is
rapidly decaying.

Allowing the MBCG algorithm to take the full seventy-nine
iterations on the composite system did not reduce the
residual norm of any of the non-iterated systems below
8.74E-3, although in theory, the residual ncrms should be
zero. This 1s due to the loss of <-rhogonality as shown in

Figure 3.2, where RORTHO of Equation (3.52) and the residual
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Figure 3.8 RORTHO vs. iteration number, prior to the first

restart for MBCG on the flat strip problem.
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Figure 3.9 RORTHO and residual norm of the composite system
vs. iteration number, pricr to the first restart
for MBCG on the flat strip problem.
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norm of the composite system are shown. Since Figure 3.8 is
the left portion of Figure 3.9, it can be seen that in the
case of Table 3.7, the algorithm was stopped just as the
orthogonality was rapidly decaying. The loss of
orthogonality should come as no siurprise since the vectors of
the next iteretion are generated from the present iteration's
residual and biresidual vectors. The norm of both of these
vectors are rapidly approaching the limit of precision of the
computing machinery after the fortieth iteration.

To test the effect of changing the desired residual norm
of the composite system in the MCGNR algorithm, it was
repeated with a desired residual norm for the composite
system of 1.0E-8 (Table 3.10). As in the case of the MBCG
algorithm, a smaller desired residual norm for the composite
system results in fewer restarts, fewer total iterations, and
less computer time. Likewise, setting the desired residual
norm for the composite system to zero in an attempt to
generate a complete set of direction vectors would be futile.

In a manner similar to Equation (3.52),

< APUAP0>
| 1A, 11 | 12D, | (3.53)

RORTHO = log;, |

was evaluated at each iteration. It is shown in Figure 3.10
along with the residual norm of the composite system for the

example presented in Table 3.6.
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4 == RORTHO
— res.norm

RORTHO and residual norm

0 20 4. 60 80

lterations

Figure 3.10 RORTHO and residual norm of the composite
system vs. iteration number, prior to the firsgt
restart for MCGNR on the flat sStrip problem.
The CDC Cyber 175 was the computing machine.
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The relatively slow convergence of the residual norm
displayed in Figure 3.10 as compared to the convergence of a
single excitation residual norm indicates that the majority
of the eigenvectors have a non-zero coefficient in the
eigenvector expansion of the initial residual. Also, no
clustering of the eigenvalues of the matrix is evident. As
in the case of Figure 3.9, RORTHO remains small until the
composite system residual norm drops below approximately
1.0E-8.

To test machine dependence, the example of Takle 3.6 was
repeated on an AT&T 6300 personal computer using thirty-two
bit precision. Table 3.11 shows the convergence of the CGNR
based algorithm on this machine for the same desired residual
norms. Figure 3.11 shows RORTHO and the residual norm of the
composite system. As a comparison, the residual norm from
Figure 3.10 for the CDC Cyber 175 is also shown. The rapid
increase in RORTHO indicates with good accuracy the loss of
orthogonality of the direction vectors. This loss is evident
by the difference of the residual norms for the two computers
beginning at the sixty-third iteration. Comparison of RORTHO
from these figures confirms that the CDC Cyber 175 with sixty
bit words maintains better orthogonality than the AT&T 6300
PC with thirty-two bit words. The Cyber lcses <the
orthogonality at approximately the same point in the

algorithm as the PC. However, the loss of orthogonality fo

H

the Cyber is not significant. Up to the last iteration, the
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TABLE 3.11
CGNR BASED ALGORITHM, AT EACH OF THE RESTARTS. THE COMMENTS
FOR TABLE 3.6 APPLY. THE MACHINE USED WAS THE AT&T 6300 PC.

restart 1 .Leﬁm_r_t_z'm_mm_l

Iterations 77 20 4
Total Iterations 77 97 101
Iterated System co..posite 9 3
Residual Norm 9.2E-13 9.0E-5 7.2E-5
Worst System 9 3 10
Residual Norm 1.5E-1 4.1C-3 €.7E-4
Best System 4 6 5
Residual Norm 2.0E-2 2.0E-3 5.6E-5

Iterations 7 1
Total Iterations 108 109
Iterated System 10 11
Residual Norm 8.1E-5 8.5E-5
Worst System 11 8
Residual Norm 1.5E-4 9.6E-5
Best System 6 11
Residual Norm 3.2E-5 8.5E-5
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: Figure 3.11 RORTHO and residual norm of the composite
system vs. iteration number, prior to the first
restart for MCGNR on the flat strip problem.

) The AT&T 6300 PC was the computing machine.
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residual is updated recursively; then during the restart, the

residual is recomputed by

(m)

r, = bhﬂ -

ax™ (3.54).

For the Cyber, the 1esidual norm from the recursive
residual and the direct recomputation differed by less than
1.0E-14, while these norms for the PC were 9.2E-13 for the
recursively updated residual and 6.8E-7 for the direct
recomputation.

In practice, one would not normally solve a single
excitation problem to such a small desired residual norm. As
the order of the system increases, the number of iterations
also increases. The probability of the residual norm
computed from the recursively updated residual being
inaccurate also increases. Using the residual computed from
Equation (3.54) would require an additional MATVEC operation,
increasing the +total MATVEC operations to three per
iteration, A compromise proposed by Peterson [23] 1is to
recursively update the residuals, but then at regular
intervals, recompute the residual by Equation (3.54). The
MCGNR algorithm was run for the example of Table 3.6 and
Figure 3.10 on the CDC Cyber 175, recomputing the residual
every tenth iteration by Equation (3.54). Figure 3.12 shows
RORTHO and the residual norm for the composite system. There
is no discernable difference between the residual norms of

Figures 3.10 and- 3.12, but the wvalues of RORTHO differ
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-=- RORTHO
— res.norm

Figure 3.12
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lterations

RORTHO and residual norm of the composite
system vs. iteration number, prior to the firss

res-art for MCGNR on the flat strip problem.
The residuals were recomputed every tenth
iteration on the CDC Cyber 175.
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greatly. ‘he recomputation of the residual introduces error
into the three term recursion generating the direction
vectors, causing RORTHO to increase substantially every
tenth iteration. On the other hand, the data indicates that
RORTHO must increase to more than 1.0E-4 before the residuzl
norm is affected.

The third example used was plane wave scattering from =z
one wavelength square flat conducting plate, as shown in
Figure 3.13. The electric field for each excitation was
normalized to unit magnitude. The problem was agezin
formulated by the method of moments using subdomain roof-top
basis functions and razor testing functions [22]. By
systematically numbering these functions, the resulting order
180 matrix has much redundancy, due to the convolutional form
of the integral equation [21). The matrix is block-Toeplitz
with Toeplitz blocks, and each of these blocks are also
block-Toeplitz with Toeplitz blocks In fact, the values of
all 32,400 elements are contained in the first and ninety-
first columns. By generating and stcring only these two
columne, the matrix fill time and memory requirements were
both reduced by a factor cf ninety. With this method the
matrix fill time was seventy five seconds on the Apollo
DOMAIN 3000 computer.

The disadvantage of this approach is an additional
routine is necessary to generate the prcper indexing for each
element of the matrix when it is reguired. One approach to

this routine would be the use of two integer matrices of
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order 180. Anothecr would be to use four two-dimensional
FFTs, each operating on a 179 by 179 grid of points. Since
the matrix is block-Toeplitz with Toeplitz blocks, the rulec
for indexing are relatively short. In spite 2f this, the
average time for a MATVEC operation increased fr.m 3.8
seconds to 9.6 seconds. Eleven systems representing a wide
range of possible excitations of interest were solved to a
residual norm of 1.0E-4 to serve as a benchmark. The number
0of iterations necessary and the parameters of each system is
shown in Table 3.12.

Each iteration took an average of 20.34 seconds for CGNR,
and 19.92 seconds for BCG. Since both methods require two
MATVECs per iteration, the MATVEC operation is over ninety
percent of the work per iteration.

The problem was then expanded to include ninety

excitations. The angle ¢ was incremented in five degree
steps from zero to forty-five degrees, and the angle 0 was
incremented in te: degree steps from zero to eighty degrees.
Extrapolating the data from Table 3.12 gives estimates of
37.65 and 32.47 hours for CGNR and BCG to treat all ninety
excitations individually.

The multiple excitation algorithms with the parameters

shown in Table 3.13 were then used to solve this expanded

croblem. The MBCG symmetric algorithm cap-talizes on tne
fact +that this particular problem 1leads <o 2 complex
symmetric matrix, in which case BCG needs only one MATVEC per
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TABLE 3.12

EXCITATION PARAMETERS AND NUMBER OF ITERATIC!.S REQUIRED FOR
CGNR AND BCG TO SOLVE EACH EXCITATION SINGLELY TO A RESIDUAL
NORM OF 1.0E-4.

‘v
5y

PP AL Lol

PR AR




gt

X URLTE

1 ga¢" 08!

OO0 YO O TN

o,

P P2 A A T (el e o X (Yo S SN ™ vy R il g o P ATt W R ey SV Y IR0 A N S A

ot L e

79

HHLIYOOTY d40 NMOAMVYIAdd 1091 0°0 p-d0° 1 "HWWAS O04dNW
88°1¢ <89 9029 ¢G81 0°0 9-30°1 O0dH
80°G¢E PRIt TTv0T Z88¢ 0" ¢~ p-30°1 DD
S6°81 1766 VLES L9GT 0°0 P-d0°1 904N
£€8°8 0°38¢ vo€c 1L 0°0 9-30°1 ANODW
68 ¢1 AN 7 9bLE GEL 0°¢- p-30°1 dNOOKW
€176 L°G¢ IvEL £L9 0°0 p-d40°1 ANOIW

suT] 1ad SOIAALVW 1307, 12301 51079q OHIWOY 93TS0dwod 103
uny abeasay uo ITWTIT 10113 pPai1Tsag

‘SNOILVLIDXHE XLIANIN HLIM dLVId ONILONANOD JYYNDOS HILONITIAYM
dANO NO SWHLIYOOTY NOILVYLIOXI JTJdILTINON JO IATNYRWUHOJIddd

£€1°¢€ JTHVYL

¢
L)
]

T R M B o = - x> Pt Wk At o .-‘ ] ¥ t % Ty Y VY —!\yi)-\ - . > N [5I% We o 2h 'Sh Pl .,1|1nl!. -~ T 2

d At L. -

AN AN,

"

AN N e N

SO S B A N Nl A NN T e Y

\f.' -

(RN

W A AY

F AN A A

- ‘,.',

P



P 850 0% 0" 6 0 5 10p 0'p 070 0" 00000 0500 0°9,0 g0 80" ah el a8’ gat e gut Bab Q¥ ot 8 5.8y 00 gut 0 fg® %, 1p" P TRV WUNCH " N W TR W W R .“‘
1. 3
Lf
)
\]

; 80 2
; ;
) Table 3.13, additional information is graphed in Figures 3.14

g through 3.24. In each of these figures, the abscissa is the

k restart number. The best and worst system residual norms are -
e plotted, along with the number of additional iterations :
? required to initiate that restart, and the number of systems 5
? solved at that restart. ‘
e} :
’ For the data of Figures 3.14 and 3.15, the desired )
2 residual norm for the composite system 1is 1.0E-4 and )
; 1.0E-6, respectively, the only difference in parameters E
N used. Setting the restart threshold on RORTHO to zero in 3
f both cases ensures the algorithm will not restart due to the pi
§ detected loss of orthogonality between vectors. The major .
j difference in the two figures is the number ol iterations o)
Y required to reduce the composite system residual to a smaller _
i norm. Expending the additional sixty-five iterations on the ‘
o

» composite system in Figure 3.15 should, based on theory and h
a previous examples, save more than that in the total number of

34 iterations that follow. However, the savings was only

: twenty-six iterations, not enough to offset the expenditure >
- of the sixty-five. Desired residual norms of less than

i 1.0E-6 were not tried in any of the runs on this problem

since the change from a desired residual norm for the

composite system from 1.0E-4 to 1.0E-6 did not result in

T

any savings, as it did in the previous examples. This can be
attributed to the fact that the computing machinery was near

the limits of precision. The additional iterations did

- A

reduce the best and worst residual norm at subsequent
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Figure 3.14 MCGNR algorithm residual norms, additional

iterations, and number of systems sclved ve.
restart number. Desired error for the
composite system was 1.UE-4 and the restart
limit on RCRTEHO was 0.0.
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Figure 3.15 MCGNR algorithm residual norms, additional
iterations, and number of systems solved vs.
restart number. Desired error for the
composite system was 1.0E-6 and the restart
limit on RORTHO was 0.0.
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restarts, but not substantially enocugh to make up for the
extra work.

The variable RORTHO as defined by (3.53) indicated that
orthogonality was rapidly deteriorating at about the
trirtieth iteration. Figure 3.16 shows the effects of
forcing the algorithm to restart when RORTHO was less than
-2.0. The algorithm restarted fifteen times after solving
the composite system before solving another system. In spite
of this, it was abie to reduce the best and worst system
residual norms at each restart and eventually solve all
systems in less time than the estimated time to solve all
systems individually. Comparing this with Figures 3.14 and
3.16 it appears that even though the orthogonality is
degraded, the residual norms of the non-iterated systems are
still reduced, and the algorithm is robust.

For the MBCG algorithm, Figures 3.17 and 3.18 differ in
the desired residual norm for the composite system. The
desired residual norm of 1.0E-6 in Figure 3.18 gives better
residual norms for the non-iterated systems initially, but
differs little from Figure 3.17. Since the limit on RORTHO
was 0.0 in both cases, the algorithm was not allowed to
restart in case of loss of orthogonality. By setting this
limit to -2.0 and allowing the algorithm to restart, as
shown in Figure 3.19, the algorithm took mocre than the
estimated time to solve all the systems individually. The
poor performance of this case and of MBCG when compared to

MCGNR stems from the basic difference between these two
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Figure 3.16 MCGNR algerithm residual norms, additional
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algorithms. MCGNR makes the residual of all systems
orthogonal to an expanding sequence of orthogonal vectors,
while MBCG makes the residual of all systems orthogonal to an
expanding sequence of linearly independent vectors. Thus the
residual norm of all systems will not show a monotonic
decrease in the MBCG algorithm as they do in the MCGNR
algorithm, where the residual norm is minimized at each
iteration. A closer examination of the envelope of residual
norms bounded by the worst and best residual norms in Figure
3.17 reveals that up to the four+teenth restart, the algorithm
is very effective. This suggests that if a residual norm of
5.0E-3 was adeguate, solving a few sysitems to a smaller
residual norm of 1.0E-4 would result in 887 total
iterations, and less than 2900 MATVEC operations. The total
time required would then be approximately 9.5 hours.

Another comparison between these two methods 1is
highlighted in Figures 3.20 and 3.21, which show the restart
number at which each system was solved. The composite system
was solved first in all four cases. The systems are
identified by their excitation parameters, 0 and ¢ of Figure
3.13,

For the MCGNR algorithm, the systems with the worst
residual norm at the restart and hence the next iteratecd
system are identical for the first twelve restarts, in spite

of different desired residual norms for the composite system.

The iterated systems are widely dispersed in 6 and ¢ , and
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{(a) Data from
figure 3.14.
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lterated system.

(b) Data from
figure 3.15.

denotes
iterated system,.

Order of solutions as a function of inciden:
angle for MCGNR.
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01 2
tend to solve non-iterated systems in the same row or column }f
of the grid, or ones which are close in the value of 6 and ¢. ;

*,
On the other hand, the worst residual norm system in the ;f
MBCG algorithm is very sensitive to parameter values, as seen l

% in Figure 3.21. This algorithm is not very robust since, as E

; an example, the system corresponding to 6 and ¢ of thirty and :E
forty degrees in the lcwer diagram is adjacent tu svstems f

! that were previcusly iterated upon. This is attributable to i»

; the MBCG algorithm only making the residual of this system g:
orthogonal to sequences of vectors which were only linearly a

1 independent, and also to the fact that many iterations and ;
restarts occurred. The orthogonalities between vectors after 32
a large number of restarts have been lost, as discussed in g'
Section 3.3. Ef

In spite of the MBCG algorithm not being as robust as the :
MCGNR algorithm for this formulation of the problem, the ?
i

? algorithm can capitalize on the resulting symmetry of the ;ﬁ
matrix to eliminate one MATVEC operation per iteration. This ff
would also reduce the number of MATVECs shown in Table 3.12 ?
by half, and give a commensurate speedup. ?

The symmetric MBCG algorithm was first attempted with the g
same parameters as used for Figure 3.17. Comparing the :ﬁ
L

results in Figure 3.22 with those in Figure 3.17 can lead to ;‘
misleading conclusions since the system with the worst &
-

‘ residual norm at the third and subsequent restart was :R
different. In thecry, the symmetric MBCG aigorithm should f'
duplicate the results of the general algorithm, but the :

-
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W

round-off error was enough to cause a significant difference ]

k beginning at the third restarct. This algorithm failed after t
| the nineteenth restart, when it took 180 iterations on one E:

system without solving it. The algorithm was forced to

restart when the number of iterations exceeded the order of ?

the system. Restarting on a different system led to the E

; stagnation problem discussed in Section 3.3. The residual }‘
norm of this system stayed at 8.9E-3 for seventy iterations i.
3 before the algorithm was stopped. Recovery from this proklem Q;
can be obtained by changing the initial guess for the T'

solution, but this procedure was not used. The general MBCG ;
algorithm has also exhibited the same behavior, indicating E:

the problem is not specific to the symmetric MBCG algorithm. ;
! The symmetric MBCG algorithm was run with a desired residual rﬂ
b norm of 1.0E-2 for all systems, including the composite ;ﬁ
K system, to validate the computer program. The data in Figure ;A
3.23 show the desired behavior of a decrease in worst and F;

best system residual norms, a decrease in additional :i

iterations, and an increase in the number of systems solved :;

1
! as the algorithm progresses. E‘
: The sensitivity of this algorithm to parameter variations 54
’ would seem to indicate that it has the potential for $
performing well, but the proper choice of parameters is not b

known a priori. With certain parameters 2ard pocsibkble

e e

enhancements to the algorithm, significant time savings may

5

result, as the final MBCG example shows.
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One enhancement discussed previously is to solve the
composite and all iterated svstems to a smaller desired
residual norm, not just the composite system alone. Non-
iterated systems would be considered solved when their
residual norms were less than a less stringent limit.

The MBCG algorithm failed when using desired residual
norms of 1.0E-5 and 1.0E-4 for the iterated and non-
iterated systems, respectively. The thirteenth and
subsequent restarts were initiated when number of attempted
iterations exceeded the order of the system. No solutions
were obtained at these restarts.

Changing to the symmetric MBCG algorithm and moving these
limits on the desired residual norms to 5.0E-5 and 5.0E-4
gives the results of Figure 3.24. The total time reqguired
was 9.38 hours, which compares well with other times shown in
Table 3.13.

One further enhancement to the MBCG algorithm is to
examine the residual norms of all the non-iterated systems at
every iteration. Since these norms do not exhibit a
monotonic behavior, the possibility exists that a system
satisfying the error criterion many iterations before a
restart may not do so at the restart. By checking the
residual norms at each iteration, systems that are solved are
removed from further processing until the next restart when
the soluticon is checked by means of Equation (3.54).

This enhancement was implemented in the symmetric MBCG

algorithm. Using the same parameters, the time required
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MBCG symmetric algorithm residual norms,
additional iterations, and number of systems
solved vs. restart number. Desired error for
the iterated systems was 5.0E-5, and 5.0E-4
for the non-iterated systems. The restart
limit on RORTHO was 0.0.
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decreased to 9.00 hours. There was no difference in the
worst and best system residual norms or the number of
additional iterations except that the seventeenth restart was
not needed. The significant difference occurs in the number
of systems solved at the twelfth restart and later. The
enhancement causes more systems to be solved earlier in the
algorithm, giving the time savings.

Finally, the plate size in the physical problem was
doubled to two wavelengths on a side to test the ability of
the MCGNR algorithm to handle a larger problem of order 760.
The number of excitations was reduced to nine to avoid

running the Apollo DOMAIN 3000 computer for extended periods

of time. The excitations used were all combinations of 0
equal to fifty, sixty, and seventy degrees and ¢ equal to
twenty-five, thirty, and thirty-five degrees. Solving the
system in the center of this three by three excitation grid
regquired 103 iterations and 10.15 hours. Using these
numbers as the average for all nine systems gives estimates
of 927 iterations and 91.35 hours to solve the systems
individually.

The residual norms shown in Figure 3.25 emphasize a
phenomena seen to a lesser extent in the other examples
present=d. The convergence rate of the composite system,
which is solved first, is more rapid than the convergence
rate of the systems after the restarts. This is duve to
round-off errors exciting eigenvectors of the matrix that

were previously not significant in the eigenvector expansion
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3.25 Residual norms of the iterated systems for the
MCGNR algorithm vs. iteration number after each

restart. The legend shows the parameters 6,0

for each system. The order of the legend is
the order of solution.
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of the initial residuals. 1In spite of this slowdown, each
system's initial residual norm was reduced at each of the
restarts. The algorithm gains efficiency when treating the
last few excitations. The statistics for this run were 761
total iterations in 79.05 hours for a 13.5 percent time
savings.

The addition of more excitations would produce better
efficiencies. For example, the MCGNR algorithm applied to
the one wavelength square plate problem previously discussed
was able to solve eleven widely spaced excitations in the
same number of iterations as required for ninety excitations
interspersed among the eleven.

Since none of the excitations for this problem involve
normal incidence, the non-symmetric eigenvectors are present
in all excitations. Thus, the use of a composite system may
not be necessary. To test this hypothesis, the MCGNR
algorithm used the system in tt2 center of the excitation
grid as the initial system in lieu of a composite system.

The overall performance of the algorithm was 691 total

iterations in 69.67 hours for a 23.7 percent time savings.

Again, the convergence rate slowdown after the first restart

is evident in Figure 3.26.
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3.5 Summary '
b5
Based on the examples presented in this chapter, the é‘
treatment of multiple excitations by iterative methods 1is :‘
feasible and can lead to significant time savings. These Et
savings are not obtainéd without the drawback of increased 52
memory requirements to store the additional excitations, ;l
¥ Al
residuals, and solutions. In cases where the matrix has '?
considerable redundancy or can be implemented by means of the '
!
fast Fourier transform, the increased requirements are offset ?'
by the decreased memory requirements for the storage of the gf
: matrix. The efficiencies of these algorithms tend to E.
increase greatly as more excitations are added. Acain, the r'
available memory becomes a limiting factor. E;
! The multiple excitation algorithm based on the conjugate ;
gradient method (MCGNR) 1s less sensitive to parameter values {
than the biconjugate gradient based algorithm (MBCG). Foz ?j
i small order systems on computing machinery with many bkits %;
of precision, the MBCG algorithm performs better than the ;ﬁ
MCGNR algorithm since the use of a composite system solved to E;
a very small residual norm is effective. However, on large éﬁ
systems, the norm reducing property of the MCGNR algorithm ::
gives it a robust nature. The observed breakdowns of the Ef
MBCG algorithm also indicate that the MCGNR algorithm is :y
better. ?1
In both of the algorithms, RORTHO, the measure of the ?
orthogonality of a set of vectors which are in the:r§ .;
'
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orthogonal, indicates the onset of the loss of orthogonality
well. This indicator tended to be very sensitive. Using the
difference between the norms of the residuals updated
recursively and directly by Equation (3.54) would be a more
appropriate indicator, but the evaluation of (3.54) adds
to the time required. Using the directly computed residual
at set intervals in the iterative algorithm caused
orthogonality to be lost at a greater rate.

The treatment presented in this chapter was intended only
to validate the concept of treating multiple excitations with
iterative algorithms. Other enhancements to the approach may
be possible. For example, the use of more than one composite

system or a different weighting on the excitations

comprising the composite system are ideas yet to be tested.
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4. PRECONDITIONED ITERATIVE METHODS

COVN R B ng

i IN NUMERICAL ELECTROMAGNETICS

)

X 4.1 Introduction

? The theoretical properties of :-he algorithms of chapter

%3 %N

two dictate that an increase in the rate of convergence may

be achieved by the use of preconditioning. The methods

&

-
'y

4 based on a residual polynomial may converge more rapidly if

[yt 4

the eigenvalue spectrum of the iteration matrix is cortaired

in a smaller region in the complex plane, or on a smaller

ol

interval of the positive real axis, depending on the type of
iterative algorithm used. The convergence rate of these N
algorithms is determined by the eigenvalues of the iteration

A matrix and the eigenvector decomposition of the excitation.

R'o 0 BN SR R Y N

All the algorithms allow rapid convergence if the excitation

is composed of only a few eigenvectors of the iteration

., 4

ma-rix. Preconditioning may be used to reduce the number of

e
‘l"" Ly

iterations necessary to achieve a solution of desired

)

accuracy, by transforming the equation to an equivalent one -
with eigenvalues in a more favorable location or in a
smaller cluster. However, this 1s no guarantee that a
solution of desired accuracy will be achieved in fewer
iterations or in less time. The preconditioning may

\ transform an excitation which was composed of few

s

eigenvectors of the original iteration matrix into an

excitation which is composed of many eigenvectors of the

v'.‘v."'x‘-'n‘n

e d
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preconditioned iteration matrix. To be effective, the

preconditioning must be fast, impose minimal additional

YT O RN IR T LB LW

memory requirements, and should exploit any special

structure of the matrix, e.g. circulant, block-circulant,

.

PN N

Toeplitz, or block-Toeplitz.

This chapter first examines the numerical approach to

o

[

electromagnetic scattering problems. A brief groundwork in

.
the solution of these rroblems is laid, and various methods

and preconditioners used by others are put in perspective. \
, . : . LY

The preconditioners used in this work are introduced ancd the Y
<

<

stopping criterion for iterative algorithms is re-examined. o
I'.
>
8
)

4.2 Formulation of Scattering Problems :
N

-~

I“
o

It is of considerable interest to find the i

.

e

electromagnetic fields scattered from an arbitrary three- :

dimensional object (scatterer) 1in free space. An

=

understanding of the scattering for a particular object may

"
«

lead to methods reducing radar cross-section or providing

AT R

other desired results. The solution of the coupled linear

I
N
partial differential equations of Maxwell has been attempted }:
by standard finite-difference and finite-element methods :‘
(24,25]. These methods have been successful, but are S
I.' \
limited by the fact that the boundary conditions are known A
' :\
exactly on or in the scatterer and at an infinite distarce W
]
from the scatterer. Current research [26,27] involves p‘
N
o
Y
ol
X

7

»

” n
«
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transforming the latter boundary condition onto a surface

close to the object to reduce the memory requirements.

The approach generally used to solve these problems 1is

to cast the problem into a Fredholm integral equation of the

first or second kind [28]. The appropriate boundary

condition at infinite distances (also referred to as the

radiation condition) is satisfied by a proper choice of

Green's function in the resulting surface or volume integral

this can be written as

equation. Symbolically,

- gs(r) = R(r) £(r) + [ £(x') G(r,r') dD' (4.1), A
D k

where g5 are the vector fields evaluated at position r, £

are the sources of these fields located at position r' , and

function. The tensor R is a ;

G is the tensor Green's

function of the material conductivity, permittivity, and

permeability. For isotropic media, R becomes a scalar. The w

domain of integration, D, is limited to the scatterer. The !

next step in the solution procedure involves satisfying

$ )

boundary conditions on a linear combination of g5 and gI,

-

the known incident fields. The fundamental unknowns to be *

Cr AP FE

determined are the induced sources, f. The operator

equation then emerges as

TL(f) = gI
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At this point, the domain of the operator is infinite-

dimensional function space. To solve the problem with the :

>l

aid of computing machinery, the operator must be projected

-
-
L™y

onto a finite~dimensional complex vector space of order N,

; cN., This is generally accomplished by the method of moments

T
-u

(MoM) [2]. Several points abcut this projection should be
elaborated on at this point.

First, for N finite, the projection is not exact.
5 However, physically realizable gl seem to be approximated 3

well by a few of the eigenfunctions of the operator. Much

- -

) research [29,30] involves finding the minimum number of

P basis and testing functions in the MoM to achieve an
accurate solution and hence reduce the order of the matrix
to be solved. This minimum is bounded by the number of
eigenfunctions of the operator deemed to be significant by ;
some criterion in the excitation. For certain separable
canonical shapes, it has been shown [13] that the .

eigenvalues of the operator and eigenvalues of the resulting

Callar el o SN

scaled moment method matrix agree well when the MoM
3 formulation is accurate. The moment-matrix corresponding to )

» Equation (4.2) is v

Ax=2D (43)1 .

R
)
D

3
,

L)
)
-
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-

S

where the elements of A and b are given by !
2

c-"

Apn = < Wy, Lfp > (4.4), s
by = < wWm, g > (4.5). 2
1}
e

The f and w are commonly referred to as basis and testing "
N

functions, respectively. If the eigenvalue equation for the &

)
continuous operator, 3
i

o

Le=2XAe (4.6}, '

..

“»
Ol
is discretized using the same basis and testing functions as e
h
used to solve Equation (4.2), the resulting matrix equation !
b

is 4
S Au=2»%iAnu (4.7), 7
2

. )

where the elements of A are given by (4.4) and the elements L
-
of S are :1
i~
o

Smn = < Wy, fn > (4.8). )
-3

Nt

Equation (4.7) involves the same eigenvalues {A} appearing -i
in Equation (4.6), and suggests that the eigenvalues of the i?
product matrix S~ 1A should approximate the eigenvalue l{
R.
spectrum of the original continuous operator. The accuracy :;
. 3

of this approximation depends on the ability of the chosen ‘
» » v 1‘
basis functions to approximate the operator's Q;
. . )
eigenfunctions. "
a

)
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When using subsectional basis and testing functions that f}

are non-zero only over a small portion of the domain and N
that do not overlap, S becomes a scaled identity matrix. .i
This can also occur if the basis and testing functions are ;
orthogonal on the domain of the scatterer, e.g. a circular ?‘
condﬁcting cylinder with eigenfunctions of the form ejn¢, é»
e

The eigenvalues of the operator Equation are known for only fa
a few canonical shapes, and thus the accuracy of the §
formulation may be checked for these shapes. In addition, Z*
W
observations relating the convergence rate of the conjugate ?‘
gradient method and the accuracy of the moment-method éz
formulation are possible [21,31]. ?1
Second, the multiplication of the MoM matrix and a :3
vector, i.e, as required within an iterative algorithm, may :&:

be done by explicitly forming and storing each element of

St

the matrix or implicitly accomplished by use of the fast

Fourier transform (FFT) for geometries and discretizations gi
o
preserving discrete convolutional symmetries [21,22,33]. S

The FFT based approach reduces the memory requirements and

ls!' r "

. 'l v . LI ) P s
AT RS R

increases the speed of the algorithm. Since the FFT
uniquely maps one complex vector onto another vector, it can
be characterized by an equivalent square matrix.

The examples presented in this thesis use subdomain
basis functions, although in theory, any preconditioning
developed for one set of basis functions may be modified to

treat another set of basis functions. This can be shown by

letting a rectangular NxM transformation matrix, T, map the

’

vy
e

.
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coefficients of the first set of N basis functions contained
in the vector f onto the coefficients of the second set of M

basis functions, f', according to [29]

£ T f! (4.9).

Preconditioning Equation (4.3) from the left yields

PAf=Pg (4.10) .

Applying the transformation gives

T"lpTTlATIEf' =T1pTTlg
= P' A' £' = P! T-l g (4.11),
where P' =T-1PT and A' =T-iAT. The preconditioner, P,

developed for the original set of basis functions can be
used for another set by forming P'. A similar result also
holds for preconditioning from the right. The practical
matter of forming T and its Moore-Penrose inverse would be

non-trivial.

4.3 Preconditioners

Preconditioning is considered by many to be an art
rather than a science [11,34), since there is usually little
hope of examining a matrix and determining which

preconditioning (if any) will give the best performance.
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Thus, preconditioning methods usually are tried on a class
of matrices to determine the best performer. The goal of
preconditioning is either to reduce the condition number of
an ill-conditioned system of equations to the point that the
solution accuracy is meaningful, or to place the excited
eigenvalues of the preconditioned iteration matrix in a
smaller region 1in the complex plane and achieve a
substantial decrease in computation time.

The literature has many references [6,35,36] ¢to
preconditioning used for matrices which are sparse in the
traditional sense, that 1is, the majority of elements of the
matrix are zero. These matrices generally result from
finite~-differencing partial differential equation, and tend
to be banded matrices with c¢onsiderable redundancy of
elements.

On the other hand, the moment-method matrices arising
from the use of subdomain basis and testing functions to
discretize the integral equations tend to be fully populated
and diagonally "strong" (although not guite diacgonally
dominant), due to an integrable singularity when evaluating
Apm of Equation (4.4). The asymptotic behavior of the
elements of A is inversely proportional to the distance
between the basis and testing function raised to a power
greater than or equal to one-half. By numbering the basis
functions in sequential order, the magnitude of the elements

of the matrix can be made to decay away from the diagonal.
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These matrices also may be Toeplitz, block-Toeplitz,
circulant, Dblock-circulant, or diagonally perturbed
variations on these types, 1f a proper numbering scheme on a
regular grid is used [21,32].

To precondition a matrix equation, a preconditioning
matrix, M, or its equivalent operation, that approximates A
is some sense is used. The preconditioned form of Equation

(4.3) may be written in one of three forms as

M1laAx=M1lb (4.12),
or

AMly=2>0b (4.13),
or

M~Y/2 5 M-1/2 2 = M~1/2 p (4.14) .

These three forms are left, right, and split
preconditioning. The split form requires M to be symmetric
positive definite. The conditior number of the
preconditioned iteration matrices M~-1la, AM-1, and
M~1/2aM-1/2 are equal. Differences in the convergence
rates of these three forms is attributable to the use of

different Krylov subspaces to construct the solutions.
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Preconditioning of a matrix, A, 1s usually accomplished

by variants of one of three methods [6]. The first method

or an approximation to A, as f

is to split A,

(4.15),

and U are diagonal, lower triangular, and upper

where D, L,

Solving a matrix equation with

respectively.

triangular,

the matrix having one of these forms is fast and easy to

implement. Variants of this approach include successive

over-relaxation (SOR) and symmetric successive over-

relaxation (SSOR) [4]. The SOR and SSOR preconditioners

.
- r”

X have the drawback of requiring the user to supply a scalar -

parameter at the outset of the solution algorithm. No

guidance 1is given as to the optimal choice of this

parameter. The major drawback of preconditioners based on .

splitting is the necessity to access each element of the

matrix, a situation which is not easily compatible with

implicit matrix-vector multiplications (MATVECs) via FFT

methods. The SSOR preconditioned conjugate gradient

algorithm of Bjork and Elfving (37] is one candidate that 3

will be examined in Chapter Five.

The second approach used is to factor or decompose A, or

an approximation to A, as

RN NP ARTROR NN
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with L, D, and U defined as in splitting. If no
approximation is made, the preconditioner is exact since the
method becomes Gaussian elimination. The variants commonly
used are incomplete LDU decomposition, incomplete LU
decomposition, or incomplete Cholesky decomposition
[(4,6,36,38,39]1. The decompositions are incomplete in the
sense that either the approximation tc A has an impoesed
sparsity pattern or the factors have an imposed sparsity
pattern. Sparsity pattern refers to an a priori
determination of which elements of the matrix will be forced
to zero and hence need not be stored or included in
calculations. The major drawback of preconditioners based
on this approach is again the necessity to access or
generate elements of the matrix, albeit to a lesser degree
than splitting based approaches. The performance of
preconditioners based on the diagonal, tri-diagonal, and
penta-diagonal section of the iteration matrix will be
examined in Chapter Five.

The third approach is to use a polynomial ir the matrix
A as a preconditioner [40,41]). Although this requires more
MATVEC operations per iteration, this approach can be shown
to reduce the total work. Current research [40] is focusing
on an adaptive algorithm to generate an optimal
preconditioning polynomial.

Other preconditioning methods which do not fall in the
three categories above still follcw the basic premise of

finding an approximatior. irn some sense to A that is easily
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invertable. BAn example of this type is to use a circulant
matrix to approximate a Toeplitz matrix. The inverse of a
circulant matrix is quickly and easily obtained by means cf
the fast Fourier transform [42,43]). In Chapter Five *the
extent to which this approximation can serve as a
preconditioner will be examined.

The use of preconditioninc¢ for the matrices arising from
electromagnetic scattering problems is relatively new. Kas
and Yip [44] have achieved good results by use of
preconditioning from the right by (A + I)~l. Unfortunately,
this reference does not give the details of implementation
of this preconditioner. Van den Berg (9] has used the
preconditioned orthomin(0) and orthomin(l) algorithms [11]
on the conducting flat strip problem, referring to them as
the contrast-source truncation technique and the conjugate
contrast source technique, respectively. Mackay and McCowen
(45] have suggested using orthomin(k), with k greater than
one, when the algorithms of van den Berg stagnate. The
preconditioning is accomplished in the spectral domain,
where the Fourier transform o©of the equivalent iteration
matrix diagonalizes. Inverting the diagonal gives the exact
inverse for the problem of a periodic array of conducting
flat strips. To achieve good results, the period of the
strips was 100 times the width ocf <the strips. The
implementation used a 1C24 pcint FFT to solve an order
seventeen Toeplitz matrix. As an attempt to extend this

idea, the inversion of the block diagonal matrix in the
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spectral domain as a preconditioner for conducting flat
plates has been tried, but with little success [46]. The
algorithm of van den Berg was generalized by Peterson [21]
with satisfactory results obtained by inverting the main

diagonal of the matrix.

4.4 Implementation of Preconditioned Iterative Methods

The three iterative methods of Chapter Two may be used
for each of the preconditioned systems shown in Equations
(4.12) through (4.14). Due to several restrictions, only
preconditioning from the left is used in all three methods
in this thesis. First, the CHEBYCODE software is written to
accomplish only left preconditioning. Second, split
preconditioning is not used in this thesis due to the
restriction on the preconditioning matrix, M. To examine
the effect o¢f different Krylov subspaces on the same
problem, the biconjugate gradient algorithms for systems
preconditioned from the left (PCBCL) and ti'e right (PCBCR)
are used

The conjugate gradient algorithm may be manipulated to
form four different preconditioned methods which minimize
different error norms at each iteration [47]. Three of
these algorithms are used in Chapter Five. Followinc the
notation of Ashby, Saylor, and Manteuffel, the algcrithms
will be referred to as PCGNE, PCGNR, and PCGNF.

Respectively, these minimize the norm of the error, residual
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and preconditioned residual. The implementation details

these algorithms are given in Ashby etal [47].

The question of when to stop the iterative algorithm was

raised and one answer given in Chapter Two. The use of a

preconditioner which approximates the inverse of A may help

to refine the answer further. Ideally, the algorithm should .

} & o

.

be stopped when the error in the solution falls below a

predetermined threshold. Rewriting Equacion (2.8) for the

preconditioned system given in Equation (4.11) gives

-~
-

| lenll ||M~1rn|[
a —— < ¥ (M lp) ———— 4,17) .
- Teol 1 < ¥MA) T ta.17 :

this is an upper bound,

As was the case for Equation (2.8),

The exact prec ditioner, a-1,

possibly a pessimistic one.

gives the equality in this equation with the condition

LR

number of M-lA equal to one. The use of a "good"

preconditioner would cause the condition number to be 3

"small” and also allow M-lr; to "closely" approximate ep.

N gt DL DL

Egquation (4.17) is more desirable than Equation (2.8) for -

monitoring to determine the stopping point of the algorithm.

The determination of whether a preconditioner is "good" is

ocbtained by comparing either the eigenvalue estimates and

hence the condition number of M-lA versus A or the relative

convergence rates of the preconditioned algorithm versus its

> Y ¥y r e v »

< non~preconditioned equivalent.
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4.5 Summary

This chapter has presented a brief overview of one of
the possible solution procedures to solve electromagnetic ¢
scattering problems. The integral equation approach, which

" is used for all the examples 1is this thesis, was ]

highlighted. The theory relating the eigenvalues of the
operator equation to the eigenvalues of the scaled moment-
method matrix was presented, as was the possibility of
changing from sub-domain basis and testing functions to hy
another choice.

The approach to preconditioning a matrix equation has .
generally fallen into the categories of splitting the !
matrix, factorizing the matrix, using a polynomial function

of the matrix, or using an easily invertable approximation

-3

to the matrix. The pioneering work of van den Berg, Kas and
Yip, Mackay and McCowen, Chan, and Peterson in the field of
preconditioned iterative methods for solving electromagnetic
scattering problems provides a base to expand upon. ‘
Finally, the choices in implementation and stopping -

criterion were reviewed.

™ WL R T N

AT A oy




- . . AR Rt . iavaca — 3 X ” r
St v ice's ! < ) s » WU ANTOAY ) N WL W YOS A "N AR il At avh ate ste i Lt it i i A AN Ak Upke ).
$ 58 L R - L g e . ! h ¥ - &4 W

d

) 118
3 5. PRECONDITIONING OF TOEPLITZ SYSTEMS ;
~
: 5.1 1Introduction N

J
Y t
y This chapter presents results for some of the 5
preconditioning methods introduced in Chapter Four. The Z;
types of electromagnetic scattering problems for which the ;
; matrix may have considerakle structure are reviewed. The $
N occurrence of Toeplitz and block-Toeplitz systems motivates Q
i

y this research. The results of preconditioning Toeplitz and E
block-Toeplitz systems conclude this chapter. 4
When using subdomain basis and testing functions and S‘
h; systematic numbering of those functions, Toeplitz and 5
’4 block-Toeplitz matrices often arise in electromagnetic ?
scattering problems [21,48]. The occurrence of Toeplitz %
forms is fortuitous, since the multiplication of a Toeplit:z 2%

] matrix and a vector (MATVEC) is easily accomplished by means
E of the fast Fourier transform (FFT). The symmetric Toeplitz ;?
‘ matrix of order N is completely described by its first row, :ﬁ
a substantial reduction in storage reguirements over a 3
general matrix. The storage requirements for the FFT based }
) approach are greater than N, but still substantially less E
. than N2 required when storing the entire matrix. Peterson =
: (21) gives a more detailed discussion of the preceding. §
K A Toeplitz matrix results when the kernel in the E
integral equation (e.g. Equation (4.1)), is convolutional. ~
E The method of moments must be used with translationally 3?
2
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invariant subdomain basis and testing functions. Changing
the scattering strip to a resistive or isotropic dielectric
material changes the diagonal of the matrix, according to
Equation (4.1). If the resistivity or permittivity 1is
constant throughout the scatterer, the matrix retains the
Toeplitz structure. Non-constant values of these
parameters would give a Toeplitz matrix perturbed along the
main diagoral. The MATVEC is still easily accomplished by
splitting the equivalent matrix into a Toeplitz and diagonal
perturbation. The operations are not significantly
increased, but the N values of the diagonal perturbation
must now be stored. If the surface has gaps in it, as
depicted in Figure 5.1, the Toeplitz form may still be
preserved by inclusion of a truncation operator in the
MATVEC. Examples of this operation are presented in Section
5.2.2

The electric field integral formulation of the two-
dimensional isotropic dielectric <c¢ylinder for TM-
polarization leads to a block-Toeplitz matrix with Toeplitz
blocks. The geometry of the cylinder need not conform to a
square grid to yield the Toeplitz structure since any cells
which do not have dielectric in them may be truncated out of
the MATVEC operation. For the TE-polarization, there are
two orthogonal components of the current, and the system is
two by two block Toeplitz with each of the blocks being

block-Toeplitz with Toeplitz blocks. For both cases, if
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: Toeplitz .
! P Toeplitz
)
¥
L}
L
D
. Circulant Perturbed Toeplitz
s Resistivity R,
b
H

R2
- R3
e

X Not Toeplitz
3 Perturbed Toeplit:z
. Figure 5.1 Examples of two-dimensional structures and the
¥ type of resulting mcment method matrix.
¥
]
[}

T o U 5 o

e e ‘.-'. ol

T
d

P

2l

e

| SIS

-'. e v '1-, '.‘ -‘. -‘, ]

fy Su

% s

5 PPN T R R TR A U Y R R e At U P L, (VG S i NN O N S
105,80 .l---l'.lc, O .’ X .. A .‘.. A ‘. ™ X o 3 > ... » ."N



BACSA NI S ) 8 1,0 3

‘

¢

o 121
)

1

R

)

P e XK

the dielectric constant varies throughout the cylinder, the
diagonal of the matrix is perturbed. :
The structures mentioned akove do not cross-couple tte 4
waves which are transverse electric (TE) and transverse
) magnetic (TM) polarized to the infinite axis of the
; scatterer. Thus, thev may be analyzed for any inciden: wave
by decomposing the wave into the TE and TM parts and solving
two smaller problems. This simplification does not occur i
for many other practical proklems. For example, the flat E
conducting plate shown in Figure 3.7 has two orthogonal .
components of the current that cross-couple. The resulting i
system is two by two block Toeplitz with each of the blocks ]
being block-Toeplitz with Toeplitz blocks.
Solution of a Toeplitz or block-Toeplitz system of

equations may be achieved by one of several algorithms

s x XK K-

{4,49-51]. A comparative study of the execution times of

-

the Trench and Akiake algorithms with the N
non-preconditioned CGNR on several electromagnetic
scattering problems came out in favor of CGNR [48]. This is ¢
X one motivation for the study of preconditioned iterative
K methods to solve Toeplitz and block-Toeplitz systems. -

: Also, a minor pesturbation to the Toeplitz form disallows :

the use of conventional Toeplitz algorithms. N
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5.2 Preconditioning

5.2.1 Toeplitz Systems

The use of a preconditioned iterative method to solve an
equivalent Toeplitz system was proposed by van den Berg [9]
as discussed in Chapter Four. The idea has recently been
advanced by Strang ([52] and shown to give "super-linear"
convergence for real matrices with geometrically decreasing
diagonals [53]. The idea presented herein parallels Strang,
although the matrices differ. The Toeplitz matrix, T, is
split as the sum of a circulant matrix, C, and an error
matrix. Since the Toeplitz matrices arising from
electromagnetic scattering problems may have decreasing
magnitudes away from the main diagonal, the circulant matrix
is obtained by copying the N/2 central diagonals from T and
completing the circulant. The error matrix has non-zero
elements only in the corners, as shown in Figure 5.2. With
T having a strong diagonal and decaying magnitudes away from
the diagonal, the error matrix is minimized in the infinite
norm [4].

The first problem considered involves a perfectly
conducting flat strip similar to that shown in Figure 3.7
with a width of twelve wavelengths. The electric field
integral equation was discretized using 120 pulse basis
functions and 120 Dirac delta testing functions [2], for the

TM-to-z polarization. Table 5.1 shows the number
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of iterations required to reduce the residual norm to
1.0E-4 for all the previously discussed algorithms except
CHEBYCODE. The values shown in Table 5.1 for CHEBYCODE are
for the preconditioned residual norm, which the algorithm
outputs when preconditioning is used. The preconditioning
methods used are the incomplete lower-upper decomposition
(ILU), and approximate circulant inverse. In the
preconditioning description, "perturbed" refers to setting
the initial guess, xg, to [ 0.01, 0, O0,....0 ]T. Otherwise,
the initial guess was equal to zero. The algorithm acronyms
are defined in Section 4.4. In the absence of
preconditioning, the PCGNR and PCGNF algorithms are both
equivalent to the previously discussed CGNR algorithm. The
PCBCL and PCBCR algorithms are also eguivalent in the
absence of preconditioning. The execution times on the
Apollo DOMAIN 3000 computer for each the entries of Table
5.1 are given in Table 5.2. The CHEBYCODE (CHEB) algorithm
stops when the product of the preconditioned residual norm
and the estimated condition number of the matrix is less
than the desired error tolerance. Thus, the CHEBR execution
times listed in Table 5.2 are higher than necessary to
reduce the residual norm to 1.0E~4.

For the wave incident from zero degrees, the biconjugate
gradient method without preconditioning was not able to

achieve convergence. The reason for this is readily seen by

examining the coefficient g. With incident plane waves and
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ot
120 uniformly spaced collinear testing functions, the :
numerator of Qg can be written as Y
IL.
)
]
120 5:
< rg,rg > = zej 4m i Ax cos 6 (5.1) . -
i=1 t.r-
)
N,
™
This quantity (see Figure 5.3) suggests the biconjugate Y
gradient is very sensitive to variations in ro. The failure 4
& J
to converge for O equal to zero degrees is due to the flaw ¢$
.N
in the algorithm addressed in Chapter Two. Equation (5.1) ‘
can be shecwn to be the same as the array factor from a !{
N
uniformly spaced array of equal amplitude and equal phase -3
<
Ny
sources with spacing twice that of the testing functions \:
)
(501 . For this case the angles, Op4y11, at which the L
".‘,
numerator of 0p will vanish are given by the real values of Ez
N
l’.
m %
Opu11 = arccos (—) (5.2, »
2 N Ax oy
‘.
Ay
)
N
gy
where m = 1,2,3,..,9 < 2 N Ax. N is the number of sample o
points spaced Ax apart. Figures 5.4 and 5.5 show the base a«
=
ten logarithm of the residual norm versus number c¢f fﬂ
N
iterations. For 06 equal to 0.0 and 0.1 degrees, the -~
w."
algorithm did not converge after 300 iterations on the order !1
K
3
120 system. The cyclical variation of the residual norm for S‘
i‘\
these two values of 6 continues for the full 300 it :rations. :;
Egquation (5.2) also predicts a null at 16.616 degrees. r
.t
Figure 5.5 shows the residual norm for this valuz ard also "
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Figure 5.3 The numerator of 0p as a function of incident

angle for the biconjugate gradient algorithm on
the flat strip problem.
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for 20.0 degrees where the value of Equation (5.2)
approaches a local maximum, highlighting the sensitivity of
this algorithm to the initial residual.

For other geometries and choices of testing functions
the task of predicting when the biconjugate gradient method

will stagnate is non-trivial. A solution to this problem

is to monitor the value of 0g. A non-zero initial guess is
usually effective when Qp is close to the precision of the
computing machinery. As an example, an initial guess of
{ 0.01, 0, 0,....0 )T was used for 6 equal to zero degrees.
The value of rg is thus changed by one one-hundredth of the
first column of the matrix. The algorithm then converged to
a residual norm of 1.0E-4 in twenty-eight iterations. The
occurrence of an extremely small coefficient, an, for n
greater than zero has not been observed except as noted in
chapter three for the biconjugate gradient based multiple
excitation algorithm. A perturbation to the solution after
the first iteration would necessitate a restart of the
algorithm. However, this approach is much preferable to the
algorithm stagnating and never obtaining a soclution.

The use of preconditioning from the left may also

alleviate this problem. The numerator of 09 then becomes
< M-1lrg, M-lry; >. However, as seen in Table 5.1, this was
not effective for the circulant inverse since the equivalent
preconditioning matrix was unitary. These possible
solutions to the stagnation problem of the biconjugate

gradient algorithm do not eliminate the problem, but merely
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shift the excitation that will cause stagnation away from

the one presently under consideration.

. The behavior of the residual norms for these algorithms

AR RN TP o

without preconditioning is demonstrated in Figure 5.6 for

the twenty degree incident angle case. Since the CGNR

PR

algorithm minimizes the norm of the residual at each

n

iteration, the residual norm shows a monotonic decrease.

The residual norm of the other two algorithms do not show

i the same behavior.

PR XA s

Figure 5.7 shows the typical convergence of the

o~

CHEBYCODE algorithm for the case of twenty degree incidence,

and tri-diagonal preconditioning. During the first twelve

G A A T T

iterations, the preconditioned residual grows until the

; adaptive portion of the algorithm generates estimates of

.
P

v -

extreme eigenvalues. As discussed in chapter two, these

estimates are then used to update the parameters of the

ellipse which determines the region of convergence. The .

algorithm then exhibits almost linear convergence with these

optimal parameters. For this example, the ellipse was

initially a circle centered at 1 + j0 in the complex plane,

with a radius of one. After the twelfth iteration, the

optimal ellipse had foci at 0.88 +3j0 and 3.34 +30.

7 hd

In Tebles 5.1 and 5.2, the reference to symmetric means

the use of the shortcut possible in the biconjugate gradient

il

algorithm if the matrix is complex symmetric (as are many

moment~method matrices).

The vectors r; and p;i are then

Ty

complex conjugates of rj and pj, respectively. Since this
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Convergence of the non-preconditioned
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matrix is symmetric, only one matrix-vector multiplication
(MATVEC) operation or its equivalent per iteration is
necessary. This time-saving feature is a significant
advantage for the algorithm of Jacobs, which reduced the
execution time by approximately one-half (see Table 5.2).
Unfortunately, this shortcut may not be used with a
preconditioned matrix unless it is symmetric. Symmetric
preconditioners, such as ILU and the approximate circulant
inverse, do not guarantee a symmetric iteration matrix
unless the original matrix and the preconditioner commute.
Polynomial preconditioning would be an excellent candidate
for this algorithm, since a matrix naturally commutes with
itself.

Figure 5.8 shows the residual norms for the PCGNF
algorithm using the three preconditioning methods with an
incident ancle of twenty degrees. The circulant based
preconditioner exhibits the worst performance at early
iterations, but overall, is better than the ILU based
preconditioners. This phenomenon is due to the different
Krylov subspaces used with each preconditioning.

The double entries for the tri-diagonal preconditioned
CHEBYCODE algorithm in Tables 5.1 and 5.2 reflect different
choices o©f the user supplied initial wvalues of the
parameters, d and c. The first set of entries resulted from
the choice of one and zero for d and c, respectively. At
the end of the run, the algorithm generated optimal wvalues

of d and ¢ (2.167 and 1.150) were used for a next run. This
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Figure 5.8 Convergence of the PCGNF algorithm on the
Toeplitz problem with tri-diagonal, penta-
diagonal, anc circulant based preconditioning.
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achieves the smallest convergence factor of 0.2792 and hence
the fastest convergence possible. The small relative
difference in number of iterations is a reflection of the
ability of the adaptive portion of CHEBYCODE algorithm to
find the optimal values of these parameters early in the
run. The comparison of CHEBYCODE with the conjugate
gradient based algorithms is not indicative of the potential
of CHEBYCODE, since the matrix used in this problem is not

poorly conditioned
5.2.2 Perturbed Toeplitz Systems

To test the algorithms and preconditioners used in the
above example on diagonally-perturbed Toeplitz systems, the
scattering from a resistive strip was formulated in the same
manner as the example used in the previous section. The
incident wave was again TM to the infinite axis of the
twelve wavelength wide strip. The resistivity, R, of the

strip varied as a function of the position along the strip,

%, according to

. Tx
R(x) = Rmax 31n(77) (5.3).

The ends cof the strip were located at x=0,L. Rmax was set

at 100.0 fcr a "mild" perturbation of the Toeplitz form. A

"severe" perturbation of the Toeplitz form was achieved by
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A, A

setting Rpax to 1000.0. The number of iterations required z
ta achieve a residual norm of 1.0E-4 and the execution %i
times on the Apollo DOMAIN 3000 computer are shown in Tables E:’
5.3 and 5.4 for the "severe" and "mild" perturbations, T
respectively. Again, the entries for the CHEBYCODE ig
algorithm are for the preconditioned residual. ??

The double entries for the non-preconditioned PCBCL ;:

algorithm in Tables 5.3 and 5.4 reflect the use of the

general biconjugate gradient algorithm and the symmetric E'
shortcut version. Since the MATVEC operation dominates the i,
execution time, the execution time using the symmetric E‘I’"
shortcut version is roughly one-half that of the general E:
algorithm, ;.
With the diagonal of the matrix no longer a constant E%:
value, the question of what value to use for the diagonal Eéf
element of the circulant approximation arises. Table 5.5 ;
shows the various choices used in Figures 5.9 and 5.10. The ?f
PCGNF algerithm was used in all cases. The choice of using é&
the smallest element of the cdiagonal of the perturbed .'
Toeplitz matrix as the diagonal element of the circulant il
approximation is obviously a pocr choice. The differences 35’
in the <convergence rates of the other methods are :D
inconsequential. .i:?
As the diagonal of the Tceplitz matrix becomes more %S
perturbed, the approximate circulant inverse beccmes less f‘
effective, while the methods based o¢n incomplete LU ZE
decomposition become more effective. Preconditioning by the t\
b

R.
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TABLE 5.5

\ THE FIVE METHODS OF GENERATING THE CIRCULANT APPROXIMATION
TO A DIAGONALLY PERTURBED TOEPLITZ MATRIX. A DESCRIPTION OF
THE METHOD USED TO GENERATE THE VALUE OF THE CIRCULANT
DIAGONAL AND THE VALUES USED FOR THE "MILDLY" AND "SEVERLY"
L PERTURBED CASES ARE GIVEN.

2 VALUE
D METHOD USES MILDLY SEVERLY

CIRC 1 Smallest {(59.2,85.7) (59.2,85.7)
diagonal
A element

CIRC 2 Arithmetic mean (122.3,85.7) (690.5,85.7)
of all diagonal
elements

CIRC 3 Largest (159.2,85.7) (1059.2,85.7)
diagonal
) element

S i

ZIRC 4 Geometric mean (102.3,91.53) (288.2,166.3) ;
of largest and -
smallest elements e

CIRC 5 Arithmetic mean (109.2,85.7) (550.2,85.7)
of largest and
smallest elements
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inverse of the main diagonal is perhaps the most attractive
for severely perturbed systems, since no additional memory
is required.

Another type of perturbation to the Toeplitz form of a
scattering problem can occur when "holes" are placed in a
structure that was previously Toeplitz. Four structures
were considered to examine the effect of this perturbation.
In all four cases, the polarization of the incident wave was
TM to the infinite axis of the scattering strip. The first
case (referred to as "pec") is the twelve wavelength wide
perfectly conducting flat strip (see Figure 3.7). The
second case (pec hole) is a perturbation of the first, where
the portion of the strip corresponding to the positions

occupied by basis functions fifty through fifty-five and

seventy through seventy-three is removed. The matrix
equation
A x=Db (5.4),

now becomes

®AO®x=00nb (5.5),

where © represents a truncation operator. For the case just

described, this operator is equivalent to a diagonal matrix

with an entry of one if the basis function is present, and
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S A
zero, Otherwise. In this light, the work of van den Berg ’
i [54]) may be viewed as using the preconditioned equation ?;'
|.|
%,
{
Oal1OaAO®x=0A100b (5.6). v
'{:
b
-
The third (rtap) and fourth (rtap hole) cases considered are :'
the scattering from a resistive strip with a resistive taper :
given by 2
S
o
X X
R(x) = 1000.0 (1.0 = sin(77)) (5.7), )
gy
Ny
-3
with the definitions of x and L as before. The fourth case F4
LY,
differs from the third in that basis functions fifty through Lw
o
f fifty-five are removed. Table 5.6 lists the number of N
iterations required to obtain a residual norm c¢f 1.0E-4 for EN
each of these cases using the modified PCGNF algorithm. The ;
A
MATVEC involving the matrix A was changed to give the "
» A
necessary © A ©, and the eguivalent preconditioning matrix, )
N
NS
M-l, became © M-l O, )
=l
'\
The perturbation of the perfectly conducting strip does }
\
atd
N\
not significantly affect the number of iterations required, ﬂ\
R
N
or the convergence behavior of the algorithm. Perturbing )
x,
the resistive strip does leads to very slow convergence on i
this order 120 problem. Other perturbed structures tried ﬁf
oS
gave results between these two extremes. The 1increased )
"
number of iterations seems to be required whenever a break L{
:..‘
e
'a
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TABLE 5.6

NUMBER OF ITERATIONS REQUIRED BY THE ALGORITHM PCGNE TO
OBTAIN A RESIDUAL NORM OF 1.0E-4 FOR THE PRECONDITIONERS
AND THE PROBLEMS SHOWN. 1IN ALL CASES THE WAVE WAS INCIDENT
FROM TWENTY DEGREES.

PROBLEM
PRECONDITIONER PEC PEC HOLE RTAP RTAP HQLZ
NONE 34 34 20 68
DIAGONAL - - 13 22
TRI-DIAGONAL 14 17 9 13
PENTA-DIAGONAL 16 17 S 13
CIRCULANT 11 16 22 58
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in the structure significantly changes the local behavior of
the currents that were flowing in the non-perturbed case.
The primary conclusion to be drawn for the data of Table 5.6
is that preconditioners based on the entire structure appear
to still be effective in reducing the number of iterations

required when the problem is perturbed by "holes".

5.3 Preconditioning of Block-Toeplitz Systems

5.3.1 Preconditioning by Block-circulant approximation

The physical problems investigated up to this point have
been restricted to flat, two-dimensional structures with
the current flowing in only one direction. The success of
the preconditioning methods for Toeplitz forms gives
encouragement for the attack on block-Toeplitz forms. A
problem giving a symmetric block-Toeplitz form is the TM
scattering from a dielectric cylinder (55]. The particular
problem shown 1in Figure 5.11 was formulated using
eighty-one square pulse basis functions and eighty-one
Dirac delta testing functions. The complex relative
permittivity of the material was chosen as 2.56 +j 2.56, and
the width of each cell in the grid was chosen as two-tenths
of a wavelength. This is twice the largest value allowable
under standard rules-of-thumb for accurate solutions, but
was necessary to obtain an example that converged relatively

slowly without preconditioning. With the numbering of basis

A .
PR RSP A W s W 1. T

v as g4 g » b.'.-. W b v_dat _0a*, 01 ”_ gav ¥ J Ql'-c o' ) - C L._“--‘_ _”N:]J‘f:w'_rv;v_

AT T AT R AT AL e A N A I N I R I R R A e N R SR LR T
o L x A A Tl : ' .

SaE v




N - v e O oryey

S UL R A 1 7 T YA A -t S A A SR R s L R LS AR AL UARGELEARGELEALOGOGE A LA WDSL L A AT ALY

(S,

L 2
Y

> 3y
2

150

« v e

AL A

73 81

- il‘ 'r,' A

xTe

x ¥

19 20 21 27

L 2
-,

P I W E E s

et >

10 11 12 18

[
3]
w
O

l"f- [ ]

P "’51. .T""

¢« e T ==y -
AL AT
e P -

e

Figure 5.11 The grid geometry and numbering scheme for the
TM-polarized dielectric cylinder problem.

e % %

-.l.'l"

“ T L,
P 'J »_ 0¥

]
"y

{q-q,qéc

L
7

P

o, ", "

e
s

MR R R

. AT e T AT AT AT T T A AT AT AT S TR AT T Y AT R T e A" At AR AT R NN
AL » » " a O a8 B At L B » £




e e

L XA

-4t

0,08 w2y Vsl vai ety

., -

151

functions as shown, the resulting moment-method matrix is
order nine block-Toeplitz, with each of the blocks an order
nine Toeplitz matrix. This case may be approximated by a
order nine block-circulant matrix with order nine circulant
blocks, which is easily inverted by use of a two-dimensional
fast Fourier transform (FFT) [42]. Figure 5.12 shows the
convergence of the PCGNF algorithm with no preconditioning,
tri-diagonal preconditioning, and block-circulant
preconditioning. The poor performance of the preconditioned
methods is attributable to the fact that the off-diagonal
blocks have relatively large elements, especially along the
diagonals. This example was repeated for a fifteen by

fifteen grid of cells (see Figure 5.13), with no success.

5.3.2 Preconditioning by SSOR

The flal cundusting plate (see Figure 3.12) was used
extensively in chapter three and is an orthodox example for
benchmarking solution procedures [56]. This problem
involves two components of current, and the cross-coupling
between them. The resulting moment-method matrix is a two
by two block matrix. Each of the blocks is block Toeplitz
with Toeplitz blocks. The ideas of the preceding sections

do extend to this structure, but are not effective.
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The symmetric successive over relaxation preconditioned

conjugate gradient algorithm of Bjork and Elfving [37] is a y

memory efficient implementation of

M-l aH o M-H 2 = M~1 pH b = MH 2

where the preconditioning matrix is given by

M-l = (D + @L ) D-1/2 (5.9). p

The preconditioning is accomplished by two sweeps through

the columns of the matrix A, and requires two more vectors

Ny vl

e

of length N than PCGNR. Two drawbacks of this method are

the necessity to access each element of the matrix A, and no -

beforehand knowledge of the optimal choice of the

parameter O.

For testing this algorithm, the plate size was set at

nine-tenths of a wavelength on each side. The formulation

and matrix storage scheme was the same as used for the

multiple excitation problem in chapter three. Figure 5.14

shows the convergence of this algorithm for various choices

The incident

of W in the allowed range of zero to two.

angle was 0 equal to sixty degrees and ¢ equal to twenty-two

degrees. For this problem and formulation, the ]

preconditioner becomes a scaled identity matrix when @ is '

equal to zero. This scales the matrix equation causing a

rotation and scaling of the eigenvalue spectrum of A, but no

‘f‘-‘ AT w nv.' ACRERERT N v’\.'" 1-* \..~.1.’v..-‘ "." 1'#'»"‘-".'-/'\-'\ -;'._:.--._« o C . ;,.,".Jif 'J‘{I ."J".\r”"-"’_-




- ee’ et ta e tnat f1" e’ Fa s a la s at ka4 A S Y 2 0 2 A R e s s 12" T W 82" * da’. 02 *oie® N2t 42t Gat dev.sue ga aat vt g 120 Gat Sa¥ Bat

N 7 s PN WG pavtatatat e St e’ " ettt 1ad gt fa obn® e
p ~
) "
155 N
) .
3
)
)
B ‘
Kl .
F “J
S
: ]
\ &
[\ t
. ¢
. 2
X
3 :
) v
0
\ ]
N
L
&
i {
A N
[} H
L} E - 0 .
)
’ 2 - 06 X
¢ = -+ 08 4
A a3 - 10 [
’ 2 - 12 ‘
X & — 14 g
1 \
' N
, ]
L] Tl
t
‘ r
« [
; -
o,
\ -5 T T T T Y T T T v 1 -
0 10 20 30 40 s0 60 70 80 .
\ "
N W,
) . D,
; lterations -
! . . Ny
@ Figure 5.14 Convergence of the SSOR preconditioned :
y conjugate gradient algorithm for the flat plate ':
: problem as a function of the parameter, . :
; N
o »
N R
Iy .
h)
) b
‘ )
:‘ A
]

P N T e T T

T e e, L VR P I LN AR SRl T
T P e S i e L e A R

-’.’w,. AT \.-:._ o J'.','_'.f‘f . 'J:,"_'.'_ -
SN, n " " e RIS »




g 8 atarnva Ve gy WL R T S U UG SRS R RIRTUA Y DAL AT A e LA 0 (0 *0 ANCAtaML LA A R A AR et ol P et afanoliafts fef et S 0ut \

)
2
)
Ry
156 o
W
J
change in the condition number of 2. Thus, it may be :
censidered as equivalent to no preconditioning. The optimal \
value of ® is close to 0.8 The execution times for ® equal
'.
~
to zero and 0.8 were 1980 and 1080 seconds, respectively. ;
o,
- A
5.3.3 Preconditioning by ILU -
p ~
g
Preconditioning of the flat plate problem described in '
N the previous section was attempted by diagonal, tri- ?
diagonal, and penta-diagonal incomplete lower-upper (ILU) ?
decomposition, with little success. The distribution of Ny
N
normalized matrix elements magnitudes (see Table 5.7) has E;
: relatively few large elements. The location in the matrix 2
)
T
of all elements with a normalized magnitude of greater than
0.1 is shown in Figure 5.15. To use the ILU decomposition :
f Y,
in a memory efficient manner, the row and column reordering +
[]
algorithm of Puttonen [57] was used to reduce the bandwidth 3
from eighty~one to thirty-one. By considering only the hy
t
elements with a normalized magnitude of greater than 0.4, ™
t
the bandwidth was reducec to eighteen. The inverse operator E
was implemented by storing a reordered copy of the centr:l "y
section of the matrix in standard sparse matrix storage <
)
format [58]. Table 5.8 shows the results of using these EL
)
preconditioners, The usefulness of this preconditioner is 4
1 hs
; limited by the large amount of storage necessary, and thus N
t
it would not be practical for larger problems. o
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TABLE 5.7 ;
»
DISTRIBUTION OF NORMALIZED MATRIX ELEMENT MAGNITUDES FOR THE M
ORDER 144 MATRIX ARISING FROM THE SCATTERING FROM A FLAT NG
PLATE. o
DECILE NUMBER PERCENTAGE
1 19356 93.3
2 472 2.3
3 0 C.0
4 0 0.0
5 0 0.0
6 764 3.7
7 0 0.0
8 0 0.0
9 0 0.0
10 144 0.7
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Figure 5.15 Location of the 1380 largest elements in the
order 144 matrix representing the scattering
from a flat plate.
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TABLE 5.8

NUMBER OF ITERATIONS AND EXECUTION TIME ON THE APOLLO DOMAIN
3000 COMPUTER REQUIRED TO OBTAIN A RESIDUAL NORM OF 1.0E-4
FOR THE ITERAT.LVE METHODS LISTED ON THE FLAT PLATE PKOBLEM.

ALGORITHM
= P R
ITERATIONS
NONE 83 - 87 67 -
36-DIAGONALS 35 40 38 21 21
62-DIAGONALS 13 15
EXECUTION TIMES (SECONDS)
NONE 1264 - 1322 1020 -
36-DIAGONALS 660 780 720 428 426
62-DIAGONALS 3304 362
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5.4 Summary

This chapter has examined the performance of wvarious
preconditioning methods when applied to Toeplitz, block-
Toeplitz, and perturbed versions of these forms. The
results for the Toeplitz and perturbed case indicate that
the preconditioner based on the circulant approximation
achieves excellent time savings for the non-perturbed
Toeplitz form. With a diagonal perturbation, this
preconditioner becomes less effective as the perturbation
becomes larger, while the preconditioners based on
incomplete lower-upper (ILU) decomposition become more
effective.

The canonical problem of the perfectly conducting flat
plate and its layers of structure was treated with the
symmetric successive over-relaxation preconditioned
conjugate gradient algorithm. This algorithm used fewer
iterations, but did not show any significant time advantage.
The reordered ILU preconditioner was effective, but very

memory intensive.
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6. SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

z.

The solution of scattering problems will continue to be

an area of practical interest for the foreseeable future.

-

The memory efficient iterative approcaches, first instituted

L)

by the spectral iterative technigue [59], enable larger g
problems to be solved. This thesis has concentrated on more ;?
efficient methods for obtaining solutions with these ;
algorithms. E;
The first area investigated was the use of the conjugate ?:

r

gradient and biconjugate gradient algorithms to solve the

R AL

multiple excitation problem. The results of Chapter Three

showed that both of these algorithms may effectively sclve

r ‘I. ‘v’-,-{_;{

many systems of equations simultaneously. The conjugate

‘,' *

rom

gradient based algorithm (MCGNR) was more robust than the

5 4

I

biconjugate gradient based algorithm (MBCG), although both

)

algorithms were able to achieve substantial reduction in

A rad

f‘-‘\

execution time. The examples presented were done cn scalar

-

e
4 ‘v

i

computing machinery. The performance of the algorithms ~
\.

could significantly change on other machines with different {ﬁ

architectures, especially on the parallel processing o

y
o,

.
x
o

machines such as the CalTech Hypercube. The use o0f a

composite system in some cases was beneficial, and in some

cases, not. Investigation into enhancements to the basic

algorithms should be fruitful,.

The other approach to achieving a gquicker colution to

the scattering problems is through the use of
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preconditioning. Experience has shown that extremely ill-
conditioned matrices in numerical electromagnetics usually
are an indication of a problem in the formulation of the
system of equations. The existence of homogeneous solutions
to the partial differential egrations can not be eliminated
by the use of preconditioning. This fact, along with the
observations of Peterson and Mittra (31], can be useful
feedback to the analyst. Preconditioning in this thesis has
been used on systems of equations with moderate condition
numbers to attempt to obtain convergence in a shorter time.
In cases where the physical problem generates Toeplitz
systems or perturbations of these, preconditioning may help
achieve this goal. The preconditioners used in chapters
four and five relied on exploiting a significant feature of
the matrix. The next step in the search would be to use
polynomial preconditioning. This, teamed with the symmetric
biconjugate gradient algorithm, seems to be a locgical choice
for future work.

Three different iterative algorithms were compared. The
performance of the conjugate gradient algorithm has been
previously studied for equations representing
electromagnetic scattering probklems [21]; the behavior of
the biconjugate gradient and CHEBYCODE algorithms has not
been published to date for these problems. This study has
shown that all three algorithms can be very effective for
scattering problems, provided that the CHEBYCODE algor.thm

is used with preconditioning.
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The biconjugate gradient algorithm (BCG) was shown to be
sensitive to the value of the initial residual, and in some
cases, the algorithm was unstable. An effective solution to
this problem was presented in the form of a perturbed
initial guess. The conjugate gradient algorithm was always
stable, but usually took more iterations and execution time
than BCG. The CHEBYCODE algorithm, due to its restriction
on the eigenvalue spectrum of the matrix, often diverged.
The use of preconditioning to move the spectrum into the
right half of the complex plane was effective. This
algorithm, although usually the most costly of the three in
terms of execution, became more competitive as the condition
number of the matrix became larger.

Chapter Two reviewed the relationship between the
eigenvalue spectrum of the matrix and the convergence rate
of the iterative algorithms. The work of Peterson et al.
[12] has shown the relationship between the eigenvalue
spectrum of the continuous operator and the resulting moment
method matrix. One of the final 1links in the procoblem
characterization, the eigenvalue spectra of various
operators for many different shapes of scatterers, needs to
be studied. By cataloging many of these, significant
features and trends may be expioited. This knowledge should
prove extremely wuseful when selecting a polynomial
preconditioner, whether the integral equation or

differential equation approach is used.
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